

# ADDITIONAL INVESTIGATION OF EARTHQUAKES WITH LOW M<sub>s</sub> TO m<sub>b</sub> RATIOS IN THE TIBET-HE JALAYA REGION

D. M. CLARK, E. I. SWEETSER and Z. A. DER Seizmic Data Analysis Center reledyne Geatech, 31/ Montgomery Street, Alexandria, Virginia 22314

10 JULY 1975

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Spensorad By

The Defense Advanced Research Projects Agency

Nuclear Monitoring Research Office

1400 Wilson Boulevard, Arlington, Virginia 22209

ARPA Order No. 1620

Menitored By

VELA Seismological Center

312 Montgomery Street, Alexandria, Virginia 22314



Disclaimer: Neither the Defense Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsible for information contained herein which has been supplied by other organizations or necessary. The views and conclusions presented are those of the authors and should not be interpreted as necessarily representing the official projects Agency, the Air Force Technical Applications Center, or the US

| REPORT DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 GOVT ACCESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO. 3 RESIPIENT'S CATALOG NUMBER                                                                                                                                                                             |
| SDAC-TR-75-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101                                                                                                                                                                                                          |
| TITLE (and Subtitle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 TYPE O HEPORY & PERIOD COVI                                                                                                                                                                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |
| ADDITIONAL INVESTIGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATION OF EARTHQUAKES WITH I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OW Technical Tept.                                                                                                                                                                                           |
| MA TO MA RATIOS IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE TIBET-HIMALAYA REGION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                              |
| >A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 PERFORMING ORG. REPORT NOMBE                                                                                                                                                                               |
| 7. AUTHOR(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |
| \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONTRACT OR GRANT NUMBER(4)                                                                                                                                                                                  |
| Clark, D. M. Sweetse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F08606-76-C-0004                                                                                                                                                                                             |
| Loub 10) Thub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (/i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41                                                                                                                                                                                                           |
| PERP THING ORGANIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | THE THE TENEDOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TMARPA Order-16                                                                                                                                                                                              |
| Teled ne Geotech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ARTS A WOOD UNIT NUMBERS                                                                                                                                                                                     |
| 314 Montgomery Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1//                                                                                                                                                                                                          |
| Ale adria, Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VT/6709                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |
| 1. I .NTHOLLING OFFICE NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 BERGHT DATE                                                                                                                                                                                               |
| Detense Advanced Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / 10 July 1975 /                                                                                                                                                                                             |
| Nuclear Monitoring Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 그렇게 되었다. 얼마하다 요즘 그렇지지 않는데 얼마하는데 그 사람들이 가셨다면 그게 되었다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1) NUMBER OF RAGES                                                                                                                                                                                           |
| 1400 Wilson BlvdArl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67                                                                                                                                                                                                           |
| 14. MONITORING AGENCY NAME &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ADDRESS(if different from Controlling Offi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e) 15. SECURITY CLASS, (of this report)                                                                                                                                                                      |
| VELA Seismological Cer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nter +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Unclassified                                                                                                                                                                                                 |
| 312 Montgomery Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | United at the                                                                                                                                                                                                |
| Alexandria, Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 154 DECLASSIFICATION DOWNGRADIN                                                                                                                                                                              |
| Alexandria, Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2234/2/0/DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SCHEDULE                                                                                                                                                                                                     |
| 6 DISTRIBUTION STATEMENT (of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t this Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              |
| APPROVED FOR PUBLIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RELEASE; DISTRIBUTION UNL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IMITED.                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RELEASE; DISTRIBUTION UNL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I the abatract entered in Block 20, il differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t from Report)                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I the abatract entered in Block 20, il differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t from Report)                                                                                                                                                                                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I the abatract entered in Block 20, il differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I the abatract entered in Block 20, il differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t from Report)                                                                                                                                                                                               |
| D, M./C/82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I the abatract entered in Block 20, il differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t from Report)                                                                                                                                                                                               |
| D, M./C/82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I the abatract entered in Block 20, il differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t from Report)                                                                                                                                                                                               |
| D, M./C/82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I the abatract entered in Block 20, il differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t from Report)                                                                                                                                                                                               |
| D. M. CAZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the abatract entered in Block 20, if different to the sharper of t | sex Zoltan A.De                                                                                                                                                                                              |
| DISTRIBUTION STATEMENT (0)  D, M./C/82  B. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I the abatract entered in Block 20, il differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sex Zoltan A.De                                                                                                                                                                                              |
| D. M. CAZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the abatract entered in Block 20, if different to the sharper of t | sex Zoltan A.De                                                                                                                                                                                              |
| DISTRIBUTION STATEMENT (of  D, M./C/82  B. SUPPLEMENTARY NOTES  9 KEY WORDS (Continue on reverse)  Discriminants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the abatract entered in Block 20, if different to the sharper of t | sex Zoltan A.De                                                                                                                                                                                              |
| DISTRIBUTION STATEMENT (0)  D, M./C/82  B. SUPPLEMENTARY NOTES  9. KEY WORDS (Continue on reverse)  Discriminants  Ms-mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the abatract entered in Block 20, il dilleren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sex Zoltan A.De                                                                                                                                                                                              |
| DISTRIBUTION STATEMENT (of  D, M./C/82  B. SUPPLEMENTARY NOTES  9 KEY WORDS (Continue on reverse)  Discriminants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the abatract entered in Block 20, if different to the sharper of t | sex Zoltan A.De                                                                                                                                                                                              |
| DISTRIBUTION STATEMENT (0)  D, M./C/82  B. SUPPLEMENTARY NOTES  9 KEY WORDS (Continue on reverse)  Discriminants  Ms-mb  Anomalous Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the abstract entered in Block 20, if different to the state of the sta | trom Reports  sex Zoltan A.De                                                                                                                                                                                |
| DISTRIBUTION STATEMENT (04)  D, M./C/82  B. SUPPLEMENTARY NOTES  P KEY WORDS (Continue on reverse)  Discriminants  Ms-mb  Anomalous Events  O. ABSTRACT (Continue on reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the abstract entered in Block 20, if different to the state of the sta | trom Reports  Sex Zoltan A.De                                                                                                                                                                                |
| DISTRIBUTION STATEMENT (of  D, M. / C / 6 2  B. SUPPLEMENTARY NOTES  SEY WORDS (Continue on reverse  Discriminants  Ms-mb  Anomalous Events  Anomalous Events  Anomalous Further analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the abstract entered in Block 20, if different of the abstract entered in Block 20, if different of the abstract and identify by block number of the anomalous events in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | trom Report)  Sex Zoltan A. De                                                                                                                                                                               |
| DISTRIBUTION STATEMENT (a)  D, M. / C / 8  SUPPLEMENTARY NOTES  EXEY WORDS (Continue on reverse)  Discriminants  Ms-mb  Anomalous Events  ABSTRACT (Continue on reverse)  Further analysis with an expanded set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the abstract entered in Block 20, if different of the anomalous events in of stations shows that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ther)  M sub s  The eastern Himalaya region (Mg) values of these events ar                                                                                                                                   |
| DISTRIBUTION STATEMENT (a)  D, M. / C / 8 2  SUPPLEMENTARY NOTES  SEY WORDS (Continue on reverse of the continue of the conti | the abstract entered in Block 20, if different of the anomalous events in of stations shows that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ther)  M sub s  The eastern Himalaya region (Mg) values of these events ar                                                                                                                                   |
| DISTRIBUTION STATEMENT (a)  D, M. / C / 6 2  SUPPLEMENTARY NOTES  EXEY WORDS (Continue on reverse)  Discriminants  Ms-mb  Anomalous Events  ABSTRACT (Continue on reverse)  Further analysis with an expanded set indeed low compared t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | aide if necessary and identify by block num of the anomalous events in of stations shows that the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ther)  M sub s  The eastern Himalaya region Ms values of these events are so of these events indicate,                                                                                                       |
| DISTRIBUTION STATEMENT (a)  DISTRIBUTION STATEMENT (a)  DISCRIBUTION STATEMENT (a)  SUPPLEMENTARY NOTES  EXEY WORDS (Continue on reverse)  Discriminants  Ms-mb  Anomalous Events  ABSTRACT (Continue on reverse)  Further analysis with an expanded set indeed low compared thowever, that all the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | side if necessary and identify by block num of the anomalous events it of stations shows that the other characteristicse events are earthquakes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ther)  M sub s  The eastern Himalaya region Ms values of these events are sof these events indicate, rather than explosions.                                                                                 |
| DISTRIBUTION STATEMENT (A)  DISTRIBUTION STATEMENT (A)  SUPPLEMENTARY NOTES  EXEY WORDS (Continue on reverse)  Discriminants  Ms-mb  Anomalous Events  Further analysis with an expanded set indeed low compared thowever, that all the Dilatational first mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | side if necessary and identify by block num  of the anomalous events is of stations shows that the omb. Other characteristics events are earthquakes stion for P waves, long per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M sub s  The eastern Himalaya region as of these events are at the than explosions. It is to Rayleigh, short                                                                                                 |
| DISTRIBUTION STATEMENT (a)  DISTRIBUTION STATEMENT (a)  No. / (a)  SUPPLEMENTARY NOTES  EXEY WORDS (Continue on reverse)  Discriminants  Ms-mb  Anomalous Events  Further analysis with an expanded set indeed low compared thowever, that all the Dilatational first moperiod S to P wave am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | side if necessary and identify by block num  of the anomalous events is of stations shows that the omb. Other characteristics events are earthquakes stion for P waves, long per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trom Report)  Sex Zo/tan A. De  ther)  The eastern Himalaya region  Sex values of these events are  as of these events indicate,  rather than explosions.  It is to Rayleigh, short  eristic of earthquakes. |
| DISTRIBUTION STATEMENT (a)  DISTRIBUTION STATEMENT (a)  No. / (a)  SUPPLEMENTARY NOTES  EXEY WORDS (Continue on reverse)  Discriminants  Ms-mb  Anomalous Events  Further analysis with an expanded set indeed low compared thowever, that all the Dilatational first moperiod S to P wave am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | side if necessary and identify by block num  of the anomalous events is of stations shows that the omb. Other characteristics events are earthquakes stion for P waves, long per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the eastern Himalaya region (%) values of these events are cases of these events indicate, rather than explosions. It is to fearthquakes. It as epicenter calculations                                       |
| DISTRIBUTION STATEMENT (a)  DISTRIBUTION STATEMENT (a)  No. / (a)  SUPPLEMENTARY NOTES  EXEY WORDS (Continue on reverse)  Discriminants  Ms-mb  Anomalous Events  Further analysis  with an expanded set indeed low compared thowever, that all the Dilatational first mo period S to P wave am Readings of the pP ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | side if necessary and identify by block num  of the anomalous events is of stations shows that the omb. Other characteristics events are earthquakes stion for P waves, long per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trom Report)  Sex Zo/tan A. De  ther)  The eastern Himalaya region  Sex values of these events are  as of these events indicate,  rather than explosions.  It is to Rayleigh, short  eristic of earthquakes. |
| DISTRIBUTION STATEMENT (a)  No. / 182  SUPPLEMENTARY NOTES  EXEY WORDS (Continue on reverse)  Discriminants  Ms-mb  Anomalous Events  Further analysis with an expanded set indeed low compared thowever, that all the Dilatational first mo period S to P wave am Readings of the pP ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aide if necessary and identify by block num  of the anomalous events in of stations shows that the omb. Other characteristics see events are earthquakes stion for P waves, long per uplitude ratios are charact lase where available as wel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the eastern Himalaya region Ms values of these events and cate, rather than explosions. iod S to Rayleigh, short eristic of earthquakes. I as epicenter calculations (Cont. or p. 1473).                     |
| Discriminants  Ms mb  Anomalous Events  ABSTRACT (Continue on reverse Further analysis with an expanded set indeed low compared thowever, that all the Dilatational first mo period S to P wave am Readings of the pP ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | aide if necessary and identify by block num  of the anomalous events in of stations shows that the omb. Other characteristics see events are earthquakes stion for P waves, long per uplitude ratios are charact lase where available as wel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the eastern Himalaya region Ms values of these events and cate, rather than explosions. iod S to Rayleigh, short eristic of earthquakes. I as epicenter calculations                                         |

FICATION OF THIS PAGE (When Data Entered)

408 258 LB

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

1 fi P1473A)

indicate that the anomalous event hypocenter are shallow, i.e., less than 80 km. Data quality did not permit the refinement of epicenter locations.

A search for additional anomalous events with respect to  $(M_S-m_D)$  in a wider area in the Himalayan-Tiber region indicated that there are no other contiguous areas containing anomalous events in this region beyond those already found.

1473B

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

# ADDITIONAL INVESTIGATION OF EARTHQUAKES WITH LOW M TO m RATIOS IN THE TIBET-HIMALAYA REGION

SEISMIC DATA ANALYSIS CENTER REPORT NO.: SDAC-TR-75-2

AFTAC Project Authorization No.: VEL

VELA T/6709/B/ETR

Project Title:

Seismic Data Analysis Center

ARPA Order No.:

2551

ARPA Program Code No.:

6F10

Name of Contractor:

TELEDYNE GEOTECH

Contract No.:

F08606-76-C-0004

Date of Contract:

01 July 1975

Amount of Contract:

\$2,319,926

Contract Expiration Date:

30 June 1976

Project Manager:

Royal A. Hartenberger

(703) 836-3882

P. O. Box 334, Alexandria, Virginia 22314

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

#### ABSTRACT

Further analysis of the anomalous events in the eastern Himalaya region with an expanded set of stations shows that the M<sub>S</sub> values of these events are indeed law compared to m<sub>b</sub>. Other characteristics of these events indicate, however, that all these events are earthquakes rather than explosions. Dilatational first motion for P waves, long period S to Rayleigh, short period S to P wave amplitude ratios are characteristic of earthquakes. Readings of the pP phase where available as well as epicenter calculations indicate that the anomalous event hypocenter are shallow, i.e., less than 80 km. Data quality did not permit the refinement of epicenter locations.

A search for additional anomalous events with respect to  $^{\rm M}$  - $^{\rm m}$  in a wider area in the Himalayan-Tibet region indicated that there are no other contiguous areas containing anomalous events in this region beyond those already found.

### TABLE OF CONTENTS

| ABSTRACT                                          | Page |
|---------------------------------------------------|------|
| ABSTRACT                                          | 2    |
| INTRODUCTION                                      | 7    |
| DATA                                              | /    |
|                                                   | 8    |
| RESULTS OF DATA ANALYSIS                          | 11   |
| Short-Period Wave Travel Times                    | 11   |
| P Wave First Motions                              | 11   |
| Short-Period Wave Amplitudes                      | 11   |
| pP Phases                                         |      |
| Description of Long-Period Seismograms            | 11   |
| Relative Location Studies                         | 22   |
| M <sub>s</sub> -m <sub>b</sub> Values             | 44   |
|                                                   | 47   |
| Effect of Abnormally Thick Crust on Surface Waves | 49   |
| SEARCH FOR ADDITIONAL ANOMALOUS EVENTS            | 51   |
| SUMMARY AND CONCLUSIONS                           |      |
|                                                   | 62   |
| REFERENCES                                        | 64   |

#### LIST OF FIGURES

| Figure | No. Title                                                                                                                                                                                   | Pag |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1      | Map of the area studied and the seismic stations used.                                                                                                                                      | 10  |
| 2a     | Dilatational first motion observed for various events.                                                                                                                                      | 18  |
| 2b     | Ratios of short-period S to short-period P displace-<br>ment for worldwide earthquakes and underground<br>nuclear explosions in Nevada and on Amchitka Island.<br>(After von Seggern, 1972) | 20  |
| 3      | Long-period seismograms for the event on 7/04/68, 30.3°N 94.9°E, recorded at SHL.                                                                                                           | 23  |
| 4      | Long-period seismograms for the event on 7/14/68, 30.3°N 94.8°E, recorded at SHL.                                                                                                           | 24  |
| 5      | Long-period seismograms for the event on 7/19/68, 30.2°N 94.9°E, recorded at SHL.                                                                                                           | 25  |
| 6      | Long-period seismograms for the event on 7/26/68, 30.3°N 94.9°E, recorded at SHL.                                                                                                           | 26  |
| 7      | Long-period seismograms for the event on 7/26/68, 29.4°N 95.0°E, recorded at SHL.                                                                                                           | 27  |
| 8      | Long-period seismograms for the event on 8/23/68, 30.2°N 94.9°E, recorded at SHL.                                                                                                           | 28  |
| 9      | Long-period seismograms for the event on 9/03/68, 30.2°N 94.9°E, recorded at SHL.                                                                                                           | 29  |
| 10     | Long-period seismograms for the event on 10/06/64, 30.3°N 94.6°E, recorded at SHL.                                                                                                          | 30  |
| 11     | Long-period seismograms for the event on 7/05/66, 27.5°N 92.4°E, recorded at SHL.                                                                                                           | 31  |
| 12     | Long-period seismograms for the event on 9/11/66, 27.0°N 95.8°E, recorded at SHL and CHG.                                                                                                   | 32  |
| 13     | Long-period seismograms for the event on 9/26/66, 27.6°N 92.7°E, recorded at SHL.                                                                                                           | 34  |
| 14     | Long-period seismograms for the event on 7/07/67, 27.8°N 92.2°E, recorded at SHL.                                                                                                           | 35  |
| 15     | S-P travel time difference plotted against P travel times at SHL and KBL.                                                                                                                   | 41  |

## LIST OF FIGURES (Continued)

| Figure | No. Title                                                                                                                                                                          | Page |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 16a    | Recomputed locations of events around 30°N-95°E.                                                                                                                                   | 45   |
| 16b    | NOS locations of events around 30°N-95°E.                                                                                                                                          | 46   |
| 17     | M -m data for the events in an extended area between 24-45° and 68-100°E. M values were computed at KBL. a values are those of NOS. Triangles are the events further investigated. | 57   |
| 18     | Revised M -m values of apparently anomalous events in the extended area, 95% confidence limits of earthquake and explosion populations marked (after Marshall and Basham, 1972).   | 61   |

#### LIST OF TABLES

| Table N | o. Title                                                                         | Page |
|---------|----------------------------------------------------------------------------------|------|
| I       | List of events studied.                                                          | 9    |
| II      | Travel times of P and S waves.                                                   | 12   |
| III     | First motions.                                                                   | 17   |
| IV      | Short period S/P amplitude ratios.                                               | 19   |
| v       | pP-P times.                                                                      | 21   |
| VI      | Long period/Rayleigh amplitude ratios.                                           | 36   |
| VII     | Relocation of Events without constraints.                                        | 37   |
| VIII    | Travel time anomalies (residuals).                                               | 39   |
| IX      | Relocation of Events with travel time corrections using residual.                | 40   |
| X       | Relocation of events with origin time restrained.                                | 42   |
| XI      | Relocation of events with origin time restrained and travel time corrections.    | 43   |
| XII     | Body-wave magnitudes (m <sub>b</sub> ) at teleseismic stations.                  | 48   |
| XIII    | Body and surface wave magnitudes at KBL.                                         | 52   |
| XIV     | Body and surface wave magnitudes for events which appear to be anomalous at KBL. | 59   |

#### INTRODUCTION

This report is a supplement to a previous report on low M events in the Himalayan region (Der, 1973), hereafter referred to as Report #296. It includes additional data for a larger network of stations, an evaluation of discriminants other than M vs. m, and a search for low M events.

We first reanalyze the anomalous events from 296 with respect to depth as determined from P and S-P times, and from P-pP times. Discrimination by means of short-period S to P amplitude ratios is discussed, and the possible use of LQ/LR ratios is explored. Then the effects on M-m<sub>b</sub> values of more complete P wave data is explored together with the expected effects on M of an abnormally thick crust. Finally we report on the use of station KBL to search for anomalous events in a wider area than searched in SDL 296.

#### DATA

The events selected from Report #296 for this study are shown in Table I. Two criteria were used in the selection: the low M $_{\rm S}$  value compared to m $_{\rm b}$ , and the proximity of the epicenter to 30°N and 95°E regardless of relative M $_{\rm S}$ -m $_{\rm b}$  values, although most of the 30°N, 95°E events also qualify as "low M $_{\rm S}$ " earthquakes.

In addition to the station network used in the previous study (Der, 1973) we acquired data from the WWSSN stations AAE, BUL, CTA, COL, SEO, TRI and NUR. The map on Figure 1 shows the location of all the stations used. The basic data consists of short and long period seismograms on 35 mm film chips. The quality of recordings is often poor, and the quality of stations is often very unequal. Some operate at high gains and are very useful (KBL for example) while some (LAH for example) are almost useless. Most of the recordings are not suitable for digital conversion because of the poor data quality.

TABLE I
LIST OF EVENTS STUDIED

|    |      |    |     |    |     |      |        |         |               |                | New      |       |
|----|------|----|-----|----|-----|------|--------|---------|---------------|----------------|----------|-------|
|    | 12-0 |    |     |    |     |      |        | inates  | SDL           | 296            | Avg.     |       |
|    | Yr   | Mo | Day | Hr | Min | Sec  | N. Lat | E. Long | $\frac{M}{s}$ | m <sub>b</sub> | <u>b</u> | Depth |
| 1  | 64   | 10 | 06  | 2  | 54  | 32.7 | 30.3   | 94.6    | 3.61          | -              | 4.54     | N*    |
| 2  | 66   | 07 | 05  | 10 | 1   | 22.0 | 27.5   | 92.4    | 3.90          | 5.32           | 5.32     | 77    |
| 3  | 66   | 09 | 11  | 15 | 55  | 20.0 | 27.0   | 95.8    | 3.77          | 5.24           | 4.69     | 37    |
| 4  | 66   | 09 | 26  | 6  | 3   | 48.0 | 27.6   | 92.7    | 3.59          | 4.49           | 5.39     | N     |
| 5  | 67   | 07 | 07  | 22 | 56  | 30.8 | 27.8   | 92.2    | 3.71          | 4.76           | 4.78     | r.    |
| 6  | 68   | 06 | 28  | 20 | 34  | 55.3 | 30.1   | 95.1    | 3.54          | 4.77           | 4.82     | 44    |
| 7  | 68   | 06 | 30  | 5  | 4   | 10.0 | 30.2   | 94.8    | 3.40          | 4.61           | 4.64     | 42    |
| 8  | 68   | 07 | 01  | 3  | 11  | 10.0 | 30.3   | 94.5    | 3.00          | 4.14           | 4.40     | 28    |
| 9  | 68   | 07 | 04  | 6  | 45  | 58.0 | 30.3   | 94.9    | 3.46          | 4.87           | 4.82     | N     |
| 10 | 68   | 07 | 13  | 6  | 5   | 54.2 | 30.3   | 94.6    | 3.46          | 4.73           | 4.75     | N     |
| 11 | 68   | 07 | 14  | 18 | 12  | 41.0 | 30.3   | 94.8    | 3.54          | 4.72           | 4.89     | 22    |
| 12 | 68   | 07 | 16  | 22 | 23  | 7.0  | 30.3   | 94.8    | 3.45          | 4.57           | 4.70     | 40    |
| 13 | 68   | 07 | 19  | 18 | 48  | 59.0 | 30.2   | 94.9    | 3.56          | -              | 4.80     | N     |
| 14 | 68   | 07 | 23  | 20 | 51  | 47.9 | 30.3   | 94.9    | 3.43          | 4.57           | 4.69     | 30    |
| 15 | 68   | 07 | 25  | 3  | 34  | 13.0 | 30.2   | 94.8    | 3.27          | -              | 4.90     | N     |
| 16 | 68   | 07 | 26  | 12 | 44  | 3.0  | 29.4   | 95.0    | 3.45          | 4.65           | 4.73     | N     |
| 17 | 68   | 80 | 23  | 12 | 1   | 16.5 | 30.3   | 94.9    | 3.46          | 4.62           | 4.75     | N     |
| 18 | 68   | 98 | 25  | 17 | 55  | 5.3  | 30.4   | 94.8    | 3.28          | 4.39           | 4.58     | 19    |
| 19 | 68   | 08 | 29  | 19 | 51  | 24.6 | 30.2   | 95.1    | 3.48          | 4.55           | 4.68     | N     |
| 20 | 68   | 09 | 01  | 5  | 59  | 26.6 | 30.3   | 94.8    | 3.59          | 4.56           | 4.60     | 20    |
| 21 | 68   | 09 | 03  | 17 | 45  | 54.1 | 30.2   | 94.8    | 3.43          | 4.52           | 4.64     | 53    |
| 22 | 69   | 80 | 15  | 7  | 15  | 37.0 | 30.2   | 95.0    | 3.57          | 4.87           | 4.90     | N     |
|    |      |    |     |    |     |      |        |         |               |                |          |       |

N = normal depth ~33 km



Figure 1. Map of the area studied and the seismic stations used.

#### RESULTS OF DATA ANALYSIS

#### SHORT-PERIOD WAVE TRAVEL TIMES

Table II shows the arrival times of short period P and S waves read from the film chips. Arrival times with estimated uncertainties larger than 3 sec were omitted from the table.

#### P WAVE FIRST MOTIONS

No clear long-period P waves were found for the clustered events, but short-period P wave first motions have been observed for many of the events. The readings and their quality classifications are given in Table III. Single events do not have enough readings to define a fault plane solution. Nevertheless clear dilatations have been observed (Figure 2a). We considered the possibility that the events clustered at 35°N, 95°E could possess a common source mechanism as many earthquake swarms and aftershock sequences do. The combined first motions, however, for the event cluster do not show a pattern comsistent with any common fault plane solution. The presence of dilatations indicates, however, that the events in question are earthquakes and not explosions.

#### SHORT-PERIOD WAVE AMPLITUDES

Table IV shows the amplitudes and dominant periods of short period P and S waves at stations where both types of waves could be observed. Von Seggern (1972) showed that the ratio of the amplitudes of short-period P and S waves is a discriminant between earthquakes and explosions. The ratios in Table IV are characteristic of earthquakes as seen by comparison with Figure 2b taken from the report by von Seggern.

#### pF PHASES

The pP-P times read at teleseismic stations are shown in Table V. The pP phases are uncertain and the times do not have the proper moveout for pP phases, this indicates that some of the phases were incorrectly identified. The depth range consistent with the pP-P times are also given in the table. All the depths are shallow, and are not inconsistent with National Ocean Survey (NOS) depths in Table I.

| No. Date/Time Station P-Time S-Time Composite Station Station P-Time S-Time Composite Station | nent |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1 64/10/06 CHG 02:57:24.7<br>t=02:54:33.0 COL 03:06:03.5<br>NDI 02:58:08.0<br>SHI 03:01:30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| t=02:54:33.0 COL 03:06:03.5<br>NDI 02:58:08.0<br>SHI 03:01:30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| NDI 02:58:08.0<br>SHI 03:01:30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| SHI 03:01:30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 0111 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| SHL 02:55:52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| TRI 03:04:55.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 2 66/07/05 NDI 10:04:28.8 10:06:55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| t=10:01:22.0 QUE 10:06:19.0 10:10:33.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| SHL 10:01:55.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 3 66/07/05 NDI 16:07:30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| t=15:55:20 CHG 15:57:29.5 15:57:29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| COL 16:07:05.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| NDI 15:59:04.5 16:01:55.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| NUR 16:05:05.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| SEO 16:01:09.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| SHI 16:02:35.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| SHL 15:56:18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 4 66/09/26 CHG 06:06:17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| COL 06:15:39.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| NDI 06:07:00.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| P00 06:08:16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| QUE 06:08:50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| SHL 06:04:23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 5 67/07/07 BUL 23:08:28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| 25.00.20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 22.13.0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| 23.02.32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
| SHI 23:03:19.0<br>TRI 23:06:54.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| IRI 25:00:54.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 6 68/06/28 BUL 20:47:08.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| t=20:34:55 CHG 20:37:47.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| COL 20:46:25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| CTA 20:46:03.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| KBL 20:39:49.2 20:43:53.0 SPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| QUE 20:40:10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| SHL 20:36:14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| TRI 20:45:20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

TABLE II (Continued)
Travel Times of P and S Waves

|     | Event        |         |            |            |           |
|-----|--------------|---------|------------|------------|-----------|
| No. | Date/Time    | Station | P-Time     | S-Time     | Component |
| 7   | 68/06/30     | BUL     | 05:16:22.8 |            |           |
| •   | t=05:04:10.0 | CHG     | 05:07:02.6 |            |           |
|     | c 03.04.10.0 | COL     | 05:15:39.5 |            |           |
|     |              | KBL     | 05:09:04.1 | 05.12.00 1 | CDM       |
|     |              | SHL     | 05:05:30.0 | 05:13:08.1 | SPN       |
|     |              | Sur     | 03:03:30.0 | 05:06:21.5 |           |
| 8   | 68/07/01     | BUL     | 03:23:20.0 |            |           |
|     | t=03:11:10.0 | CHG     | 03:14:02.7 |            |           |
|     |              | COL     | 03:22:37.0 |            |           |
|     |              | SHL     | 03:12:28.9 | 03:13:26.0 | SPN       |
| 9   | 68/07/04     | BUL     | 06:58:11.0 |            |           |
|     | t=06:45:58.0 | COL     | 06:57:29.0 |            |           |
|     |              | KBL     | 06:50:52.3 | 06:54:56.1 | SPN       |
|     |              | NUR     | 06:55:21.0 | 00.34.30.1 | SIN       |
|     |              | SHI     | 06:53:02.9 |            |           |
|     |              | JIII    | 00.33.02.9 |            | •         |
| 10  | 68/07/13     | BUL     | 06:18:05.0 |            |           |
|     |              | CHG     | 06:08:45.8 |            |           |
|     |              | COL     | 06:17:22.5 |            |           |
|     |              | CTA     | 06:17:07.2 |            |           |
|     |              | KBL     | 06:10:47.6 | 06:14:51.0 | SPE       |
|     |              | NDI     | 06:09:26.2 |            |           |
|     |              | NUR     | 06:15:19.5 |            |           |
|     |              | QUE     | 06:11:04.5 |            |           |
|     |              | SHI     | 06:12:56.5 |            |           |
|     |              | TRI     | 06:16:17.0 |            |           |
| 11  | 68/07/14     | BUL     | 18:24:56.2 |            |           |
|     | t=18:21:41   | CHG     | 18:15:35.3 |            |           |
|     |              | COL     | 18:24:11.0 |            |           |
|     |              | KBL     | 18:17:36.4 | 18:21:40.1 | SPE       |
|     |              | NDI     | 18:16:15.5 | 10.21.40.1 | SIE       |
|     |              | NUR     | 18:22:07.5 |            |           |
|     |              | POO     | 18:17:40.0 |            |           |
|     |              | SHI     | 18:19:45.5 |            |           |
|     |              | SHL     | 18:14:02.8 |            |           |
|     |              | TRI     | 18:23:08.5 |            |           |
| 6   |              | INI     | 10.23.00.5 |            |           |
| 12  | 68/07/16     | BUL     | 22:34:19.5 |            |           |
|     | t=22:23:07.0 | CHG     | 22:25:56.2 |            |           |
|     |              | COL     | 22:34:36.0 |            |           |
|     |              | CTA     | 22:34:17.4 |            |           |
|     |              | KBL     | 22:28:00.9 | 22:32:04.0 | SPN       |
|     |              |         |            |            | 0114      |

TABLE II (Continued)
Travel Times of P and S Waves

|     | Event      |         |            |            |           |
|-----|------------|---------|------------|------------|-----------|
| No. | Date/Time  | Station | P-Time     | S-Time     | Component |
|     |            | NDI     | 22:26:39.3 |            |           |
|     |            | NUR     | 22:32:32.2 |            |           |
|     |            | SHI     | 22:30:09.9 |            |           |
|     |            | SHL     | 22:24:26.9 |            |           |
| 13  | 68/07/19   | AAE     | 18:58:41.5 |            |           |
|     | t=18:48:59 | BUL     | 19:01:11.9 |            |           |
|     |            | CHG     | 18:51:51.8 |            |           |
|     |            | COL     | 19:00:30.7 |            |           |
|     |            | KBL     | 18:53:54.5 | 18:57:57.0 | an.       |
|     |            | NDI     | 18:52:32.4 | 10:37:37.0 | SPN       |
|     |            | NUR     | 18:58:25.9 |            |           |
|     |            | QUE     | 18:54:12.8 | 10.50.22 0 | 1647.     |
|     |            | SHI     | 18:56:03.0 | 18:58:33.0 | SPN       |
|     |            | SHL     | 18:50:19.5 |            |           |
|     |            | TRI     | 18:59:24.9 |            |           |
| 14  | 68/07/23   | рιπ     | 01 04 00 0 |            |           |
| -   | 00/07/23   | BUL     | 21:04:02.0 |            |           |
|     |            | CHG     | 20:54:41.0 |            |           |
|     |            | COL     | 21:03:18.5 |            |           |
|     |            | KBL     | 20:56:43.4 | 21:00:46.4 | SPN       |
|     |            | NDI     | 20:55:21.5 |            |           |
|     |            | NUR     | 21:01:13.0 |            |           |
|     |            | SHL     | 20:53:08.5 |            |           |
|     |            | SHI     | 20:58:50.8 |            |           |
| 15  | 68/07/25   | BUL     | 03:46:25.5 | *          |           |
|     | t=03:34:13 | CHG     | 03:37:06.2 |            |           |
|     |            | COL     | 03:45:43.0 |            |           |
|     |            | NDI     | 03:37:46.8 |            |           |
|     |            | NUR     | 03:43:37.0 |            |           |
|     |            | SHI     | 03:41:15.5 |            |           |
| 16  | 68/07/26   | AAE     | 12:53:44.0 |            |           |
|     | t=12:44:03 | BUL     | 12:56:14.5 |            |           |
|     |            | CHG     | 12:46:59.5 |            |           |
|     |            | COL     | 12:55:37.9 |            |           |
|     |            | CTA     | 12:55:15.0 |            |           |
|     |            | KBL     | 12:49:02.0 | 12:53:05.0 | CDE       |
|     |            | NUR     | 12:53:33.5 | 12.33:03.0 | SPE       |
|     |            | QUE     | 12:49:23.3 |            |           |
|     |            | SHI     | 12:51:11.0 |            |           |
|     |            | SHL     | 12:45:12.7 | 12:46:12.5 | Cnn       |
|     |            | TRI     | 12:54:38.0 | 12:40:12.5 | SPE       |
|     |            |         | 12.34.30.0 |            |           |

TABLE II (Continued)
Travel Times of P and S Waves

| W   | Event      |         |                          |                                         |           |  |
|-----|------------|---------|--------------------------|-----------------------------------------|-----------|--|
| No. | Date/Time  | Station | P-Time                   | S-Time                                  | Component |  |
| 17  | 68/08/23   | BUL     | 12.12.24 5               |                                         |           |  |
|     | t=12:01:16 | CHG     | 12:13:34.5<br>12:04:07.7 |                                         |           |  |
|     |            | COL     | 12:12:45.0               |                                         |           |  |
|     |            | CTA     | 12:12:43.0               |                                         |           |  |
|     |            | KBL     | 12:06:10.7               | 10 10 11                                |           |  |
|     |            | NDI     | 12:04:50.0               | 12:10:14.1                              | SPN       |  |
|     |            | NUR     | 12:10:42.5               |                                         |           |  |
|     |            | QUE     | 12:06:35.7               |                                         |           |  |
|     |            | SHL     | 12:02:37.0               | 10.00                                   |           |  |
|     |            | OIL     | 12:02:37.0               | 12:03:34.2                              | SPE       |  |
| 18  | 68/08/25   | BUL     | 18:07:20.0               |                                         |           |  |
|     | t=17:55:05 | CHG     | 17:57:59.4               |                                         |           |  |
|     |            | COL     | 18:06:38.0               |                                         |           |  |
|     |            | CTA     | 18:06:19.3               |                                         |           |  |
|     |            | KBL     | 18:00:01.4               | 18:04:04.5                              | CDD       |  |
|     |            | NDI     | 17:58:41.1               | 10.04.04.5                              | SPE       |  |
|     |            | NUR     | 18:04:33.0               |                                         |           |  |
|     |            | QUE     | 18:00:20.2               |                                         |           |  |
|     |            | SHL     | 17:56:27.5               | 17:57:36.7                              | SPE       |  |
| 10  | (0/00/0    |         |                          | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | SIE       |  |
| 19  | 68/08/29   | BUL     | 20:03:37.5               |                                         |           |  |
|     | t=19:51:25 | CHG     | 19:54:17.3               |                                         |           |  |
|     |            | COL     | 20:02:55.0               |                                         |           |  |
|     |            | CTA     | 20:02:35.0               |                                         |           |  |
|     |            | KBL     | 19:56:19.0               | 20:00:22.8                              | SPN       |  |
|     |            | NDI     | 19:54:59.4               |                                         |           |  |
|     |            | NUR     | 20:00:49.7               |                                         |           |  |
|     |            | SHI     | 19:58:28.8               |                                         |           |  |
|     |            | SHL     | 19:52:45.0               |                                         |           |  |
|     |            | TRI     | 20:01:50.0               |                                         |           |  |
| 20  | 68/09/01   | BUL     | 0(.11.41.5               |                                         |           |  |
|     | t=05:59:27 | CHG     | 06:11:41.5               |                                         |           |  |
|     |            | COL     | 06:02:19.5               | 06:08:26.0                              | SPN       |  |
|     |            | CTA     | 06:10:59.0<br>06:10:37.9 |                                         |           |  |
|     |            | KBL     | 06:06:06.0               |                                         |           |  |
|     |            | SHI     |                          |                                         |           |  |
|     |            | SHL     | 06:06:32.0<br>06:00:48.4 |                                         |           |  |
|     |            | J       | 00.00.40.4               |                                         |           |  |
| 21  | 68/09/03   | CHG     | 17:48:45.0               |                                         |           |  |
|     | t=17:45:54 | COL     | 17:57:22.0               |                                         |           |  |
|     |            | CTA     | 17:57:03.0               |                                         |           |  |
|     |            | KBL     | 17:50:47.2               | 17:54:50.5                              | SPE       |  |
|     |            |         |                          | , , , , , ,                             | SFE       |  |

TABLE II (Continued)
Travel Times of P and S Waves

|     | Event      |         |            |            |            |
|-----|------------|---------|------------|------------|------------|
| No. | Date/Time  | Station | P-Time     | S-Time     | Component  |
|     |            |         |            |            | componente |
|     |            | NDI     | 17:49:26.0 |            |            |
|     |            | NUR     | 17:55:16.5 |            |            |
|     |            | POO     | 17:50:49.3 |            |            |
|     |            | QUE     | 17:51:08.7 |            |            |
|     |            | SHL     | 17:47:12.1 | 17:48:08.0 | SPN        |
| 22  | 69/08/15   | CHG     | 07:18:42.8 |            |            |
|     | t=07:15:37 | COL     | 07:27:07.9 |            |            |
|     |            | KBL     | 07:20:32.7 | 07:24:37.0 |            |
|     |            | NIL     | 07:19:51.6 | 07:23:27.0 |            |
|     |            | QUE     | 07:20:52.5 |            |            |
|     |            | SHI     | 07:22:42.0 |            |            |
|     |            | SHL     | 07:16:57.4 | 07:17:51.7 |            |

TABLE III

First Motions

| 18   | 8/25      | 89 | 1   | +5  |     | +5  |     | ı   | +5              |
|------|-----------|----|-----|-----|-----|-----|-----|-----|-----------------|
| 17   | 8/23      | 89 | 1   | +5  |     |     |     | +   | -3              |
| 16   | 7/26      | 89 | +5  | ÷.÷ |     |     |     |     | +               |
| 15   | 7/25      | 89 |     | -5  |     | -5  |     |     | -:              |
| , 14 | 7/23      | 89 | -;  | +3  |     | +5  |     |     | +               |
| 13   | 7/19      | 89 |     | +   |     |     |     | -3  |                 |
| 12   | 7/16      | 89 | +   | +5  |     | +5  |     | 1   | <del>2</del> '+ |
| 11   | 7/14      | 89 | 1   | +5  | -3  | +5  |     | +   | +               |
| 10   | 7/13      | 89 |     | +5  |     | -;  |     | +   | +               |
| 6    | 7/04      | 89 |     | +3  |     |     |     | +   |                 |
| 80   | 7/01      | 89 | +   | +3  |     |     |     |     | <del>2</del> +  |
| 7    | 6/30      | 89 | +   | +5  |     |     |     | 1   |                 |
| 9    | 10/6 6/28 | 89 | ,   | +5  |     |     |     | +   | 1               |
|      | 10/6      | 99 | 1   |     |     | +5  |     |     |                 |
| No.  |           |    | SHL | QUE | P00 | NOT | LAH | KBL | СНС             |

op -



Figure 2a. Dilatational first notion observed for various events.

 $\begin{tabular}{ll} TABLE & IV \\ Short & Period & S/P & Amplitude & Ratios \\ \end{tabular}$ 

| Event   | Station           | R(S/P Amplitude<br>Ratio) | Log R  0.16 1.45      |  |
|---------|-------------------|---------------------------|-----------------------|--|
| 7/05/66 | QUE<br>ND I       | 1.4<br>28.4               |                       |  |
| 7/07/67 | QUE<br>ND I       | 5.5<br>29.7               | 0.74<br>1.47          |  |
| 6/28/68 | KBL               | 1.3                       | 0.10                  |  |
| 6/30/68 | CHG<br>SHL<br>KBL | 2.6<br>16.0<br>0.4        | 0.41<br>1.20<br>-0.45 |  |
| 7/01/68 | SHL               | 77.1                      | 1.89                  |  |
| 7/26/68 | KBL<br>SHL        | 1.1<br>65.4               | 0.05<br>1.82          |  |
| 8/23/68 | SHL               | 31.1                      | 1.49                  |  |
| 8/25/68 | SHL               | 1.1                       | 0.06                  |  |
| 8/29/68 | SHL               | 0.8                       | -0.11                 |  |
| 9/03/68 | SHL               | 15.0                      | 1.18                  |  |
| 8/15/69 | SHL               | 7.8                       | 0.89                  |  |



Figure 2b. Ratios of short-period S to short-period P displacement for worldwide earthquakes and underground nuclear explosions in Nevada and on Amchitka Island. (After von Seggern, 1972)

Table V
pP - P Times

|          | SEQ | SHI   | NUR | AAE | CTA | COL  | BUL | TRI  | Avg<br>DEPTH(km) |
|----------|-----|-------|-----|-----|-----|------|-----|------|------------------|
| 66/09/11 |     | _     |     | -   | _   | 6.0  | _   |      |                  |
| 67/07/07 | _   | 5.5   | _   | _   | _   | +    | +   | _    | 20               |
| 68/06/28 | _   | _     | _   | _   | 5.5 | +    |     | +    | 17               |
| 68/07/01 | -   | NR    | NR  |     | 3.3 |      | +   | +    | 17               |
|          |     |       | NK  | -   | _   | 5.0  | +   | -    | 16               |
| 68/07/13 | -   | 4.6   | +   | -   | +   | 7.5  | +   | 2.5  | 10-24            |
| 68/07/14 | ?   | 5.0   | 5.0 | -   | -   | 6.5  | +   | 11.5 | 17-40            |
| 68/07/16 | -   | 10.1  | +   | _   | +   | 9.5  | +   |      |                  |
| 68/07/23 | _   | 7.4   | ?   |     |     |      |     | -    | ~ 35             |
|          |     |       |     | -   | -   | +    | 5.9 | -    | 15-27            |
| 68/07/25 | -   | 9.5   | +   | -   | -   | +    | +   | _    | 35-40            |
| 68/07/26 | -   | 10.5? | +   | +   | 5.0 | +    | +   | 4.5  | 14-15            |
| 68/08/25 | -   | NR    | 5.0 | _   | 4.2 |      |     | 7.5  |                  |
| 68/08/29 |     |       |     |     | 4.2 | +    | +   | -    | 13-18            |
|          |     | 7.9   | +   | -   | +   | +    | 5.0 | +    | 15-27            |
| 68/09/01 | ?   | +     | _   | _   | +   | +    | 4.5 | ?    | 12               |
| 69/08/15 | _   | +     | ?   |     |     |      |     | •    |                  |
|          |     |       | •   | _   | -   | 10.1 | -   | -    | 33               |

<sup>+</sup> P Observed, no pP

<sup>-</sup> No P

NR No Record

<sup>?</sup> Doubtful Readings

#### DESCRIPTION OF LONG-LERIOD SEISMOGRAMS Events Clustered at 30°N and 95°E

Figures 3 through 9 show long-period three-component seismograms at Shillong (SHL) for seven events. SHL is the only station which recorded the surface waves well from the event cluster at 30°N, 95°E. Weak surface waves were observed at other stations, especially at Chiang Mai (CHG), but these are hardly worth reproducing due to the low signal-to-noise ratio. The recordings at Shillong all show a Rayleigh pulse on the vertical component which remains reasonably similar from event to event. The group velocity of the Rayleigh pulse is about 3km/sec and the period is about 10 sec. The horizontal components are also very similar from event to event to a very fine level of detail. Short-period waves corresponding to Lg arrive before the Rayleigh pulse and there are indications of longer period waves, probably fundamental Love, preceding the Rayleigh pulse.

The Rayleigh pulse is also seen on the horizontal components. The ratio of the horizontal to vertical amplitude is close to .7 ruling out the possibility of the pulse consisting of higher modes since for higher modes this ratio should be much lower for any reasonable mantle structure. The waveforms are quite similar, suggesting similar source mechanisms for these events.

# Discussion of Long-Period Seismograms of Events not Located at 30°N, 95°E

The most prominent feature of long-period seismograms from the 10/06/64 event is the Rayleigh wave (Figure 10). Higher mode surface waves may be also present in the higher frequency waves preceding the Rayleigh pulse. The quality of seismograms is poor.

Figure 11 shows seismograms of the event 7/05/66 recorded at Shillong at a distance of 220 km. P and S phases are visible. There is an indication of Love waves. The depth of this event was given by the NOS as 77 km.

Figure 12 shows seismograms for the event 9/11/66. At Shillong long-period P and S phases are faintly visible. Clear Rayleigh and Love waves are present. There are indications of higher Rayleigh modes in the form of short-period waves preceding the fundamental Rayleigh mode on the vertical component.



Figure 3. Long-period seismograms for the event on 7/04/68,  $30.3^{\circ}N$  94.9°E, recorded at SHL.



Figure 4. Long-period seismograms for the event on 7/14/68,  $30.3^{\circ}N$  94.8°E, recorded at SHL.



Figure 5. Long-period seismograms for the event on 7/19/68, 30.2°N 94.9°E, recorded at SHL.



Figure 6. Long-period seismograms for the event on 7/26/68,  $30.3^{\circ}N$  94.9°E, recorded at SHL.



Figure 7. Long-period seismograms for the event on 7/26/68,  $25.4^{\circ}N$  95.0°E, recorded at SHL.



Figure 8. Long-period seismograms for the event on 8/23/68,  $30.2^{\circ}$   $94.9^{\circ}E$ , recorded at SHL.

Figure 9. Long-period seismograms for the event on 9/03/68,  $30.2^{\circ}N$   $94.9^{\circ}E$ , recorded at SHL.



Figure 10. Long-period seismograms for the event on 10/06/64,  $30.3^{\circ}N$   $94.6^{\circ}E$ , recorded at SHL.





Figure 12. Long-period seismograms for the event on 9/11/66,  $27.0^{\circ}N$  95.8°E, recorded at SHL and CHG.

At Chiang Mai no P or S is visible. Fundamental Rayleigh and Love waves are present, as well as indications of higher mode Rayleigh waves.

The recordings of the earthquake 9/26/66 at Shillong (Figure 13) again show long period P, S, and Rayleigh waves.

The recording of the event 7/07/67 shows S and Rayleigh waves (Figure 14).

### Long-Period S to Long-Period Rayleigh Amplitude Ratios

Von Seggern (1972) and Blandford and Clark (1974) showed that the long-period S vs. Rayleigh wave amplitude ratio can be a good discriminant between earthquakes and explosions. Explosions generate long-period shear waves much less efficiently than earthquakes if the events are scaled to the same maximum Rayleigh amplitude. The data presented by von Seggern show that the mean of the logarithm of S/Rayleigh amplitude ratios is around -.3, corresponding to a ratio of about .5. Only the largest explosions generate visible long-period S waves. Since most of the events investigated in this report show at least indications of long-period S waves, this fact by itself place them in the earthquake population. Table VI shows the observed S to Rayleigh amplitude ratios at SHL. The values were obtained by measuring the periods and peak-to-peak amplitudes of the waves and correcting the latter for the instrument response. Rayleigh wave amplitudes were measured on the vertical component, S wave amplitudes on the horizontal components where the amplitude was maximum.

The value for the clustered events is based on some faint indications of long period S. The measurements are questionable and if real they represent a maximum value. The ratios fall within the earthquake region of von Seggern, although such ratios are rather crude discriminants in the absence of distance corrections.

#### Location and Depth Studies

Table VII shows the results of location and depth determination using the travel times in Table II and with no constraints on either depth or location. Most of the depths are moderate except events 1 and 9; some are negative.



Figure 13. Long-period seismograms for the event on 9/26/66,  $27.6^{\circ}N$   $92.7^{\circ}E$ , recorded at SHL.



Figure 14. Long-period seismograms for the event on 7/07/67,  $27.8^{\circ}N$  92.2°E, recorded at SHL.

 $\begin{tabular}{ll} TABLE & VI \\ Long & Period/Rayleigh & Amplitude & Ratios \\ \end{tabular}$ 

|                       | R (S/Rayleigh    |       |
|-----------------------|------------------|-------|
| Event                 | Amplitude Ratio) | Log R |
| 10/06/64              | .75 ?            | 12 ?  |
| 07/05/66              | .25              | 61    |
| 07/07/66              | .62              | 21    |
| 09/11/66              | .60              | 23    |
| 09/26/66              | .78              | 11    |
| Cluster at 30°N, 95°E | ~.84 ??          | 08 ?? |

TABLE VII
Relocation of Events Without Constraints

|    |    | te   |                |       |        | SI | nift |
|----|----|------|----------------|-------|--------|----|------|
| Mo | Da | y Yr | Origin Time    | Depth | SDV(R) | KM | AZ   |
| 10 | 06 | 64   | 02:54:45.9     | 175   | 0.8    | 92 | 201  |
| 09 | 11 | 66   | 15:55:12.1     | - 34  | 0.6    | 59 | 348  |
| 09 | 26 | 66   | NO CONVERGENCE |       |        |    | 310  |
| 07 | 07 | 67   | 22:56:35.1     | 49    | 1.2    | 16 | 207  |
| 06 | 28 | 68   | 20:35:00.2     | 74    | 1.4    | 17 | 261  |
| 06 | 30 | 68   | 05:04:13.7     | 52    | 0.7    | 7  | 308  |
| 07 | 01 | 68   | 03:11:10.6     | 46    | 0.0    | 21 | 350  |
| 07 | 04 | 68   | 06:46:22.5     | 227   | 0.8    | 78 | 306  |
| 07 | 13 | 68   | 06:05:57.0     | 50    | 1.2    | 5  | 169  |
| 07 | 14 | 68   | 18:12:40.1     | 1     | 1.0    | 24 | 357  |
| 07 | 16 | 68   | 22:23:06.4     | 23    | 1.1    | 6  | 56   |
| 07 | 19 | 68   | 18:49:00.2     | 16    | 1.3    | 23 | 307  |
| 07 | 23 | 68   | 20:51:50.3     | 31    | 0.9    | 19 | 293  |
| 07 | 25 | 68   | 03:34:16.5     | 49    | 0.2    | 21 | 302  |
| 07 | 26 | 68   | 12:44:12.6     | 67    | 4.1    | 48 | 293  |
| 80 | 23 | 68   | 12:00:53.1     | 146   | 1.7    | 56 | 26   |
| 08 | 25 | 68   | 17:55:11.5     | 54    | 0.6    | 24 | 209  |
| 08 | 29 | 68   | 19:51:29.3     | 62    | 0.8    | 33 | 269  |
| 09 | 01 | 68   | 05:59:33.5     | 70    | 0.9    | 25 | 170  |
| 09 | 03 | 68   | 17:45:53.9     | 32    | 1.6    | 18 | 18   |
| 80 | 15 | 69   | NO CONVERGENCE |       |        |    | 10   |

As the next step we tried to derive regional travel time anomalies by constraining the depths of events 13, 14, and 16 (which were recorded at many stations) to the NOS depths (which incidentally are within the range allowed by pP times) performing a location run, and considering the travel time residuals as travel time anomalies for the region surrounding these events. This is the SRST approach of Veith and Clawson (1973). The residuals for the three events showed some resemblance, so we took the averages for the three events as travel time anomalies. These are shown in Table VIII. Applying the residuals as travel time corrections to all events, we relocated the events. The results of the computations are shown in Table IX. There are no significant charges in the depths.

An attempt was also made to refine the location by means of an additional restraining of the origin time by use of S-P arrival time differentials. S-P times together with the standard JB tables determined a set of distance and corresponding P travel times. By subtracting the travel time from the arrival time, a origin time estimate is obtained. However, the resulting origin times deduced from different stations generally did not agree within an acceptable limit. The reason was probably in the difficulty of determining a good S start time for the distant stations. Since most events had readings from SHL and KBL, at distances of about 5° and 20° respectively, it was decided to use only these stations for estimating origin times.

A plot of the observed values of S-P vs. P time for those events with readings at both SHL and KBL (Figure 15), indicates that the average slope is about .83 as opposed to a slope of .78 from the JB tables within the same distance range. Therefore, a constant fraction, .83/.78, of the JB S-P versus O-P line was used to determine the origin time from readings at SHL and KBL for all events.

Based upon the new origin times, location runs were again made and the results are shown in Tables X and XI. As can be seen from the tables, the depths recalculated do not change appreciably. Some move deeper, some shallower in comparison to the previous runs, but with the exception of one event, they are all shallower than 100 kms.

TABLE VIII
Travel Time Anomalies (Residuals)

SHL 0.4 CHG 0.5 NDI -0.9 KBL 1.3 -0.8 QUE SHI 0.0 NUR 1.3 0.0 TRI COL -1.3 BUL -0.9 POO 0.8 SEO 0.0 0.0 AAE CTA -0.4

TABLE IX
Relocation of Events with Travel Time
Corrections using Residual

| Мо | Date<br>Day Yr | Origin Time    | Depth | SDV(R) | SI<br>KM | nift<br>AZ |
|----|----------------|----------------|-------|--------|----------|------------|
| 10 | 06 64          | 02.5/./2.5     |       |        |          | 112        |
|    |                | 02:54:43.5     | 150   | 0.8    | 65       | 203        |
| 09 | 11 66          | 15:55:13.7     | - 23  | 1.1    | 59       | 346        |
| 09 | 26 66          | NO CONVERGENCE |       |        |          |            |
| 07 | 07.67          | 22:56:34.8     | 50    | 0.7    | 12       | 225        |
| 06 | 28 68          | 20:35:01.3     | 89    | 1.3    | 15       | 247        |
| 06 | 30 68          | 05:04:14.5     | 67    | 1.3    | 3        | 58         |
| 07 | 01 68          | 03:11:10.3     | 52    | 0.0    | 29       | 348        |
| 07 | 04 68          | 06:46:15.1     | 176   | 0.4    | 23       | 290        |
| 07 | 13 68          | 06:05:58.0     | 61    | 2.0    | 12       | 187        |
| 07 | 14 68          | 18:12:41.6     | 11    | 1.8    | 24       | 3          |
| 07 | 16 68          | 22:23:08.3     | 39    | 1.8    | 5        | 93         |
| 07 | 19 68          | 18:49:01.9     | 29    | 1.9    | 30       | 299        |
| 07 | 23 68          | 20:51:51.5     | 42    | 1.8    | 30       | 95         |
| 07 | 25 68          | 03:34:17.0     | 56    | 1.1    | 23       | 293        |
| 07 | 26 68          | 12:44:14.0     | 84    | 4.2    | 44       | 284        |
| 08 | 23 68          | 12:00:56.5     | -122  | 2.0    | 51       | 26         |
| 80 | 25 68          | 17:55:12.7     | 69    | 1.4    | 32       | 207        |
| 80 | 29 68          | 19:51:30.1     | 72    | 1.4    | 34       | 262        |
| 09 | 01 68          | 05:59:33.3     | 75    | 0.8    | 19       | 160        |
| 08 | 15 69          | 17:45:52.7     | 23    | 1.9    | 25       | 24         |
|    |                | NO CONVERGENCE |       |        |          |            |



Figure 15. S-P travel time difference plotted against P travel times at SHL and KBL.

|    | Da  | te   |             |       |        | S  | hift |
|----|-----|------|-------------|-------|--------|----|------|
| Mo | Day | y Yr | Origin Time | Depth | SDV(R) | KM |      |
| 10 | 06  | 64   | N/A         |       |        |    |      |
| 09 | 11  | 66   | N/A         |       |        |    |      |
| 09 | 26  | 66   | N/A         |       |        |    |      |
| 07 | 07  | 67   | N/A         |       |        |    |      |
| 06 | 28  | 68   | 20:35:01    | 82    | 1.4    | 21 | 249  |
| 06 | 30  | 68   | 05:04:14    | 55    | 0.7    | 7  | 291  |
| 07 | 01  | 68   | 03:11:19    | 126   | 2.2    | 42 | 186  |
| 07 | 04  | 68   | 06:46:04    | 68    | 1.1    | 18 | 306  |
| 07 | 13  | 68   | 06:06:00    | 79    | 1.3    | 24 | 209  |
| 07 | 14  | 68   | 18:12:48    | 66    | 1.9    | 21 | 267  |
| 07 | 16  | 68   | 22:23:13    | 83    | 1.5    | 33 | 207  |
| 07 | 19  | 68   | 18:49:08    | 84    | 1.8    | 43 | 239  |
| 07 | 23  | 68   | 20:51:55    | 76    | 1.3    | 36 | 239  |
| 07 | 25  | 68   | N/A         |       |        |    |      |
| 07 | 26  | 68   | 12:44:07    | 20    | 4.3    | 54 | 323  |
| 80 | 23  | 68   | 12:01:25    | 78    | 3.5    | 39 | 225  |
| 08 | 25  | 68   | 17:55:08    | 24    | 0.8    | 8  | 203  |
| 80 | 29  | 68   | 19:51:24    | 16    | 1.1    | 29 | 316  |
| 09 | 01  | 68   | N/A         |       |        |    |      |
| 09 | 03  | 68   | 17:46:00    | 91    | 2.0    | 20 | 218  |
| 80 | 15  | 69   | 07:15:46    | 56    | 3.5    | 76 | 293  |

TABLE XI
Relocation of Events with Origin Times
Restrained and Travel Time Corrections

|    | Dat |    |             |       |        | Sh | ift |
|----|-----|----|-------------|-------|--------|----|-----|
| Мо | Day | Yr | Origin Time | Depth | SDV(R) | KM | AZ  |
| 10 | 06  | 64 | N/A         |       |        |    |     |
| 09 | 11  | 66 | N/A         |       |        |    |     |
| 09 | 26  | 66 | N/A         |       |        |    |     |
| 07 | 07  | 67 | N/A         |       |        |    |     |
| 06 | 28  | 68 | 20:35:01    | 87    | 1.3    | 14 | 252 |
| 06 | 30  | 68 | 05:04:14    | 62    | 1.3    | 6  | 40  |
| 07 | 01  | 68 | 03:11:19    | 135   | 2.3    | 37 | 191 |
| 07 | 04  | 68 | 06:46:04    | 82    | 0.6    | 14 | 153 |
| 07 | 13  | 68 | 06:06:00    | 81    | 2.0    | 24 | 199 |
| 07 | 16  | 68 | 18:12:48    | 65    | 2.1    | 12 | 268 |
| 07 | 16  | 68 | 22:23:13    | 85    | 2.0    | 31 | 202 |
| 07 | 19  | 68 | 18:49:08    | 86    | 2.2    | 41 | 239 |
| 07 | 23  | 68 | 20:51:55    | 77    | 1.9    | 30 | 238 |
| 07 | 25  | 68 | N/A         |       |        |    |     |
| 07 | 26  | 68 | 12:44:07    | 22    | 4.5    | 53 | 329 |
| 80 | 23  | 68 | 12:01:25    | 81    | 3.5    | 37 | 224 |
| 80 | 25  | 68 | 17:55:08    | 25    | 1.7    | 6  | 196 |
| 09 | 01  | 68 | N/A         |       |        |    |     |
| 09 | 03  | 68 | 17:46:00    | 91    | 2.3    | 16 | 216 |
| 80 | 15  | 69 | 07:15:46    | 62    | 4.2    | 92 | 299 |

## RELATIVE LOCATION STUDIES

Although the exact epicentral location of the events studies do not have, in general, any bearing on the discrimination problem, knowledge of these locations could be helpful in relating the events to local tectonic patterns. Of special interest are the clustered events situated around 30°N and 95°E. These events are very similar in their characteristics and occur in a limited area. The epicentral locations given by NOS are given to an accuracy of .1° and are scattered over an area of  $50 \times 50 \text{ km}$ . Using a different network for each event would result in a different network bias in location of each event. Thus even if all events occurred at the same point, their computed location would scatter over a wide area. By using common networks for several events it can be expected that their relative locations can be determined with higher accuracy, although the absolute locations could be wrong. Therefore the following approach was adopted. Common networks were chosen for pairs of events and the differences in latitude and longitude ( $\Delta\lambda_{ij}$ , $\Delta\phi_{ij}$ ) were computed for each pair. The values obtained naturally do not correttute an internally consistent set; therefore, the values are adjusted using least squares. However, this procedure is not quite correct, since the errors of the various  $^{\Delta\lambda}{}_{\mbox{ii}}$  and  $^{\Delta\phi}{}_{\mbox{ii}}$  are not independent, because they were computed by using overlapping sets of observing stations. The correct procedure to use is the joint epicenter determination method of Douglas (1967); see also Ahner, Blandford, and Shumway (1971) for which no working computer program is available at present at SDAC. Nevertheless the applied procedure should also remove the network biases and result in acceptable relative location provided that the travel time anomalies behave consistently over the area studies. The first attempt to use the method outlined above resulted in an average rms inconsistency of relative locations larger than .1°. This was judged to be too large, so combinations with large travel time residuals were discarded and the procedure repeated. The rms error decreased to .07° (which is still quite large) and the locations, although different from those given by NOS, did not seem to occupy an area of different size. The relative locations of the same events are shown in Figure 16a, together with locations by NOS in Figure 16b. Both depth and epicenter calculations thus show that discrepancies





are present in the travel time readings and the travel time anomalies which prevent more accurate determination of depths and epicenters. The only positive statement that can be made is that the events do not occupy a wider area than originally supposed, and there are no indication that they are confined to a considerably smaller area, a narrow fault trace, say. Since event 2 (in Table I) had only 3 P readings it was omitted from the calculations.

Summarizing the recomputation of event locations and depths, it can be concluded that all attempts to refine locations and depths were defeated by poor data quality and no significant and demonstrable improvement was achieved. The calculations indicate, however, that there is no reason to believe the events studied are considerably deeper than the depths given by NOS, so it is unlikely that the low M values are due to great source depths.

## Ms-mb Values

Body wave magnitudes were recomputed incorporating data at teleseismic stations. The additional magnitude values computed are given in Table XII. The magnitudes derived with station corrections from Report #296 (Der, 1973) were combined with  $m_h$  determinations at the teleseismic stations. We did not attempt to derive station corrections for the teleseismic stations. The  $m_h$  values at the additional stations agreed well with the values of  $m_h$  at the network used in Report #296, which eliminates the possibility that there were relatively high  $m_{\tilde{b}}$  values due to network bias at near stations. The new  $m_{\tilde{b}}$ values differ little from those given in Report #296. The  $M_{_{\rm S}}$  values remain unchanged, since the addition of new stations did not result in more surface wave detections. The new  ${\tt M}_{{\tt S}}$  and  ${\tt m}_{{\tt b}}$  values are given in Table I. The depth correction .008h used in Report #296 and based on NOS depth was removed from the  $M_{g}$  values in this table, since in our opinion the body-wave data are not of sufficient quality to rule out the possibility that these events are deep. If then the events are possibly shallow, then application of this correction begs the question.

Marshall and Basham (1972) derived their depths from amplitude measurements of the dispersed surface wave train at various dominant periods. This was not possible in our case since most of the surface wave observed were short transients which could not be analyzed without digitization and Fourier analysis. The quality of the available photographic records was poor and it was not practical to digitize them. Besides, calculations by von Seggern

TABLE XII

Body-Wave Magnitudes (m<sub>b</sub>)
at Teleseismic Stations

| Event Date | Station | m <sub>D</sub> | Event Date | Station | m    |
|------------|---------|----------------|------------|---------|------|
| 64/10/06   | COL     | 4.67           | 68/07/19   | BUL     | 4.90 |
|            | BUL     | 4.48           |            | COL     | 4.85 |
|            | SHI     | 4.47           |            | NUR     | 4.91 |
| 66/09/11   | BUL     | 4.14           |            | SHI     | 4.53 |
|            | COL     | 4.03           | 68/07/23   | BUI     | 4.96 |
|            | SHI     | 4.30           |            | COL     | 4.78 |
| 66/09/26   | CTA     | 4.48           |            | NUR     | 4.83 |
|            | COL     | 4.59           |            | SHI     | 4.61 |
|            | BUL     | 4.29           | 68/07/25   | BUL     | 4.90 |
| 67/07/07   | BUL     | 4.76           |            | COL     | 4.98 |
|            | COL     | 4.89           |            | NUR     | 4.94 |
|            | CTA     | 4.48           |            | SHI     | 4.78 |
|            | SHI     | 5.01           | 68/07/26   | BUL     | 4.96 |
| 68/06/28   | BUL     | 4.62           |            | COL     | 4.82 |
|            | COL     | 4.93           |            | NUR     | 4.80 |
|            | CTA     | 4.90           |            | SHI     | 4.58 |
|            | SHI     | 4.62           |            | TRI     | 4.91 |
|            | TRI     | 5.17           | 68/08/23   | BUL     | 4.66 |
| 68/06/30   | BUL     | 4.68           |            | COL     | 4.92 |
|            | COL     | 4.79           |            | NUR     | 4.94 |
| 68/07/01   | COL     | 4.42           | 68/08/25   | BUL     | 4.88 |
|            | TRI     | 4.90           |            | COL     | 4.85 |
| 68/07/04   | BUL     | 4.84           |            | CTA     | 4.66 |
|            | COL     | 4.85           |            | NUR     | 4.67 |
|            | NUR     | 4.83           | 68/08/29   | BUL     | 4.68 |
|            | SHI     | 4.78           |            | COL     | 4.92 |
| 68/07/13   | COL     | 4.87           |            | NUR     | 5.04 |
|            | SHI     | 4.67           |            | SHI     | 4.64 |
| 68/07/14   | BUL     | 4.94           | 68/09/01   | BUL     | 4.50 |
|            | SHI     | 4.79           |            | COL     | 4.85 |
|            | COL     | 4.98           |            | SHI     | 4.60 |
|            | NUR     | 4.87           | 68/09/03   | COL     | 4.82 |
|            | TRI     | 5.26           |            | CTA     | 4.88 |
| 68/07/16   | BUL     | 4.83           |            | NUR     | 4.91 |
|            | COL     | 4.92           | 69/08/15   | BUL     | 4.91 |
|            | NUR     | 5.08           |            | COL     | 5.09 |
|            | SHI     | 4.49           |            | SHI     | 4.78 |

using Harkrider's theory of surface wave generation showed that the method used by Marshall and Basham to determine depth is extremely unreliable. Thus the separation of earthquakes and explosions achieved by Marshall and Basham must be partially due to spectral differences between earthquakes and explosions. Without the "depth correction" the separation of explosion and earthquake is less pronounced, and low M earthquakes are liable to be mistaken for explosions.

This problem is especially severe for relatively small events where the surface waves can be seen only at nearby stations at low signal-to-noise ratios. This is precisely the case we are dealing with. Without the depth correction most of the events studied here seem to have an anomalously low  $^{\rm M}$  compared to  $^{\rm m}$ , and could potentially be mistaken for explosions if the  $^{\rm M}$ - $^{\rm m}$  discriminant is used.

# Effect of Abnormally Thick Crust on Surface Waves

The source region studied is anomalous in its crustal thickness. Estimates of crustal thickness from surface wave studies are in the range 70-90 km (Gupta and Narain 1967). The anomalously thick crust presumably results from the underthrusting of the Indian subcontinent under Eurasia. To ascertain that the low surface wave excitation is not due to abnormally thick crust we have calculated the surface wave excitation factor  $A_R$  (Harkrider, 1964).

From Harkrider (1964) and from equations (12) and (24) in Ben-Menahem and Harkrider (1964) one may derive the equation

$$A_{LR} = M(\omega)A_{R}(\frac{\omega}{C_{R}})^{1/2}(\frac{W_{S}}{W_{O}}) \chi(\Theta)$$

where  $M(\omega)$  is the source strength (M(o) = moment),  $C_R$  is the Rayleigh phase velocity, and  $W_s/W_o$  is the ratio of model amplitudes at source depth. Note that  $W_s/W_o$  is unity for surface sources, and greater at any depth in a thick crust than in a shallow one because the fundamental mode amplitude decays more slowly if the velocity increases slowly with depth.  $C_R$  decreases as the crust increases in thickness and von Seggern (1971) has shown that  $A_R$  is proportional to  $(UC_R)^{-1}$  (where U is the group velocity) which also would be expected to increase in a thick crust. Thus one would expect that the effect of a 70-90 km

crust would be to <u>increase</u>  $M_S$  if measured on the thick crust, not to decrease it. And in fact explicit calculations give increases of .2 to .4  $M_S$  units over a Gutenberg crust.

Now let us suppose that the amplitude measurement takes place on thin crust and that the wave has crossed via a smooth transition. It seems plausible that the amplitude would revere to what it would have been for a source in the thin crust. In fact, McGarr (1969) obtains theoretically and experimentally a shift of magnitude not significantly different from  ${\tt U}^{-3/2}$  for an ocean continent transition. Thus for measurement on a thin crust, we would expect the net effect to approximately vanish. Note that this failure to explain low surface waves by a completely elastic mechanism does not rule out the low Q proposed by Lambert (1974) as an explanation.

The dominant period of Rayleigh waves observed is 10-15 sec which indicates that most events considered are shallow since greater source depth would drastically decrease the amplitude of these waves relative to the longer periods which we do not observe.

# SEARCH FOR ADDITIONAL ANOMALOUS EVENTS

Search for low  $(M_s-m_h)$  events was performed in a wider area around the region previously studied. All NOS events occurring between 25-45°N and 68-100°E in the time interval June 4, 1968, and September 30, 1972 were used, except for those already discussed in SDL 296, and those which had no  $m_h$  listed by NOS. The time interval given was determined by the availability of the data from the WWSSN station Kabul (KBL), Afganistan. This station operates at very high magnifications on both the short-period and long-period instruments. It is located inside the region searched, and is therefore quite suitable for detecting the events to be studied. It can be expected that the single-station  $m_{\rm h}$  values would be unreliable since path and station effects for short-period P waves can result in standard deviations of the order of .5 magnitude units. Single-station  ${ t M}_{{ t S}}$  values have a smaller scatter due to path and station effects but can be influenced by radiation patterns. In view of these factors, the following strategy was adopted:  $\mathbf{m}_{\mathsf{b}}$  values as listed by NOS were used (which were presumably computed by averaging  $m_{\overline{b}}$  values of several stations) jointly with  $M_{\rm g}$  values determined at KBL alone. Previous experience, Der (1973), showed that m values given by NOS are in general higher than these determined by SDAC. Too-high m values would minimize the chance of missing some truly anomalous events. Similarly some  $M_{_{\mathbf{S}}}$  values will be too low at KBL due to radiation patterns. These events, if truly normal in their M -m characteristics, can be eliminated later after closer examination. Thus the combination of NOS  $m_{b}$  and KBL stations  $M_{s}$  values can be used to sift through the initial data set and eliminate most events with normal M - m values. Table XIII gives the events in the initial data set with the  $M_{_{\mathbf{S}}}$  and  $m_{_{\mathbf{D}}}$  values used. Events which are not given here but listed by NOS were eliminated because of undetectable signal amplitudes, some operational difficulty at KBL, or interference with other events. It is of course possible that some of the events eliminated because no LR was detectable were truly the events we were looking for. The  $M_{_{\mathbf{S}}}$  values were computed by Marshall and Basham's method using depth corrections with depth taken from NOS. Figure 17 shows the plot of M<sub>s</sub>-m<sub>b</sub> values obtained. In all, 165 M<sub>s</sub>-m<sub>b</sub> pairs are shown. The

TABLE XIII Body and Surface Wave Magnitudes at KBL

| 9         | 6           |          |           |                  | NOS        |      |         | Σ     |        |
|-----------|-------------|----------|-----------|------------------|------------|------|---------|-------|--------|
| חשרה      | Urigin lime | Latitude | Longitude | Depth            | and a      | ಷ್ಕ  | Prague  | SM&B  | DVS    |
| 68/06/10  | 17:36:30.0  | 39.0N    | 75 15     | 5                | ,          | ,    |         |       |        |
| 68/06/14  | •           | 31 2N    | 30.07     | 7.               | 2 .        | 2.16 | 3.84    | 4.18  | 4.35   |
| 68/07/01  |             | NO 55    | 70 2E     | 67               | 6.9        | ı    | 3.60    | 5.29  | 4.24   |
| 68/07/20  |             | 30 VN    | 72. OE    | 55               | 6.4        | 4.63 | 3.08    | 3.53  | 3.45   |
| 68/07/26  |             | NT CE    | 70.05     | 19               | 8.4        | 4.89 | 3.73    | 3.94  | 4.26   |
| 68/08/09  | 02:24:53 2  | 35 JN    | /0.1E     | 35               | 4.8        | 1:   | 3.60    | 4.39  | 4.31   |
| 68/00/10  |             | N7.C7    | 94。4臣     | 34               | 4.7        | t    | 3.24    | 3.56  | 7 1.7  |
| 87/00/00  |             | 26.4N    | 90.6E     | 31               | 5.2        | 1    | 3 07    | 7. 26 | 77.0   |
| 68/09/12  | 15:36:48.8  | 39.8N    | 77.8E     | 00               | 0 7        |      | 10.0    | 4.20  | 4.24   |
| 68/10/10  | 22:49:01.5  | 37.2N    | 70.0F     | 37.              |            | l    | T + - + | 17.4  | 4.86   |
| 68/10/28  | 17:48:29.1  | 27 3N    | 30.00     | ָר רָ<br>רַר רָר | t.         | 1    | 3.18    | 3.82  | 3.88   |
| 68/11/01  | 20:49:17 3  | 37 CM    | 30.00     | 3/               | 8.4        | 3.97 | 3.59    | 3.63  | 3.9.5  |
| 68/11/05  | 02.02.64.2  | NO. / C  | 17.75     | 41               | 4.7        | ı    | 3.08    | 3.17  | 3.71   |
| 68/11/00  | 2.44.20.20  | 32.4N    | 76.4E     | 33               | 6.4        | ı    | 3.45    | 4.20  | 3 07   |
| 00/17/00  | 15:51:59.0  | 41.6N    | 70.1E     | 33               | 8.4        | 78.7 | 707     | 2 00  | 1000   |
| CO/TO/69  | 02:38:51.8  | 39.9N    | 75.8E     | 33               | 8.7        |      | 3 / 6   | 0000  | 4.09   |
| 69/01/05  | 09:56:41.1  | 28.0N    | 85.2E     | 33               | )          | 2 10 | 0.0     | 0.00  | 3.94   |
| 69/01/05  | 18:51:23.3  | 26.6N    | 96 7F     | 0 0              | l          | 4.0  | 3.39    | 3.26  | 3.72   |
| 69/01/23  | 20:01:19.5  | 32 2N    | 76.15     | 73               | ı (        | 1    | 3.97    | 3.61  | 4.19   |
| 69/01/23  | 23:46:26.0  | 32 2N    | 70 OF     | 5.5              | 4.0        | 4.47 | 2.96    | 3.02  | 3.49   |
| 69/02/12  | 00-22-37    | 32.2N    | 70.0E     | 33               | ı          | 4.72 | 2.51    | 3.22  | 3.04   |
| 60 /00/11 | 9.75.27.00  | 4T-3N    | /9.3E     | 33               | 6.4        | 5.36 | 4.18    | 61.7  | 7. 50  |
| 69/02/15  | 75-FO 15 6  | 41.5N    | 79.5E     | 33               | 4.7        | 4.92 | 3.66    | 3.58  | 7.07   |
| CI /20/60 | 53:59:T0.6  | 41.5N    | 79.5E     | 33               | 5.0        | 5.33 | 3 05    | 7, 26 | 100    |
| 81/70/69  | 19:51:27.5  | 29.7N    | 68.4E     | <u></u>          | 7          | )    | 0000    | 07.1  | 4.30   |
| 69/02/22  | 20:37:07.1  | 26.6N    | 92.4F     | 22               | 0 0        |      | 3.41    | 4.45  | 3.99   |
| 69/03/01  | 15:00:20.0  | N7 17    | 70 70     | 4 0              |            | 27.6 | 3.66    | 3.99  | 3.92   |
| 69/03/03  | 06:20:21 8  | 20 JW    | 19.4E     | 33               | 4.6        | 1    | 2.88    | 3,38  | 3.29   |
| 69/03/03  | 14.03.00 5  | 31.0K    | 19.9E     | 20               | 5.3        | ı    | 3.87    | 4.17  | 4.29   |
| 69/03/11  | 10.00.00    | NO.TC    | /1.8E     | 33               | 4.5        | 1    | 3,55    | 3.65  | 7 16   |
| 11/00/09  | 13.50:50:   | 41.3N    | 79.5E     | 33               | 4.7        | 5.01 | 3.41    | 3.73  | 3 2 2  |
| 17/50/60  | 11:19:29.3  | •        | 71.9E     | 37               |            |      | 3.51    | 2,5   | 1.00 × |
| 69/03/27  | 19:37:44.1  | 39.0N    | 71.8E     | 33               | 5.2        | ı    | 77.7    | , ,   | 80.4   |
| 69/04/03  | 02:52:50.9  | 41.2N    | 79.2E     | 70               | , .<br>I n | 000  | ) • t   | 5.79  | 3,48   |
|           |             |          |           | þ                | J. 4       | 2.00 | 3.72    | 3.96  | 4.13   |

TABLE XIII (Continued)

Body and Surface Wave Magnitudes at KBL

| M&B DVS              | 7.6        | 72         | 7/-        | 3.86 4.25  | 5.4        | 5.7        | 0 4 70     | 67         | 81         | 7          | (.         | · (**      | 4.05 4.02  | 7          |            | 7          | 3.87 4.39  | 7          | . (**      | 12         | 12 4       | .13 4      | 7          |            | , m        | ~          | 91         | 20         | 7 27       | 7          | 7 59       | 63         |   |
|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---|
| M<br>Prague          | 3 60       | 20.0       |            | 3.93       | 3,38       | 3.56       |            |            | 3.63       |            |            |            | 3.79       |            |            |            |            |            |            | 3,31       |            |            | 3.82       | 3,42       | 2.96       |            |            |            | 87         | 3.54       |            | 24         | • |
| a <sup>c</sup>       | ,          | ı          | 5, 38      | 4.79       | ı          | . 1        | 5.43       | 4.12       | 4.97       | 1          | 4.72       | 4.77       | 4.51       | 5.61       | •          | ı          | 5,35       | 1          | 1          | ı          | 4.79       | ı          | 4.36       | 5.18       | 1          | ı          | 1          | 1          | ı          | ı          | 4.55       |            |   |
| NOS                  | 6 7        | 5.2        | 6.4        | 4.7        | 8.4        | 5.0        | 6.4        |            | 4.5        | 5.4        | 8.4        | 5.1        | 4.6        | 5.0        | 5.2        | 5.1        | 6.4        | 5.2        | 5.1        | 5.1        | 4.5        | 6.4        | 5.4        | 6.4        | 5.0        | 4.7        | 6.9        | 5.0        |            | 4.6        |            | 5.2        | 1 |
| Depth                | 23         | )<br> <br> | 53         | 32         | 33         | 20         | 33         | 36         | 33         | 19         | 35         | 39         | 33         | 33         | 55         | 26         | 19         | 40         | 52         | 1          | 30         | 33         | 20         | 33         | 33         | 42         | 33         | 43         | 45         | 47         | 33         | 45         |   |
| Longitude            | 70. 3E     | 95.3E      | 77.9E      | 86.7E      | 70.9E      | 91.8E      | 79.5E      | 84.6E      | 81.9E      | 79.4E      | 79.4E      | 75.8E      | 97.0E      | 77.8E      | 71.4E      | 73.9E      | 75.1E      | 68.6E      | 69.8E      | 88.3E      | 69.6E      | 75.1E      | 94.7E      | 80.8E      | 70.7E      | 71.8E      | 80.5E      | 69.3E      | 97.0E      | 74.2E      | 87.9E      | 73.7E      |   |
| Latitude             | 30.8N      | 25.9N      | 44.0N      | 41.5N      | 39.9N      | 25.8N      | 41.4N      | 42.0N      | 35.6N      | 30.6N      | 41.4N      | 41.1N      | 43.3N      | 39.8N      | 35.4N      | 39.2N      |            | 29.7N      | 38.4N      | 41.4N      | 30.3N      | 38.6N      | 25.6N      | 29.7N      | 40.1N      | 37.0N      | 43.0N      | 41.1N      | 27.0N      | 40.6N      | 32.4N      | 39.7N      |   |
| Event<br>Origin Time | 07:36:36.2 | 12:50:15.2 | 04:00:08.7 | 13:48:33.6 | 10:04:38.6 | 08:35:22.1 | 00:39:57.5 | 18:52:26.3 | 17:32:56.6 | 01:33:24.1 | 04:42:40.6 | 03:40:12.9 | 13:10:31.9 | 04:34:14.9 | 22:35:53.6 | 04:06:21.9 | 21:19:26.5 | 04:48:45.5 | 14:07:57.8 | 16:14:58.8 | 12:31:55.0 | 16:56:25.2 | 23:13:28.8 | 18:45:17.4 | 13:41:09.0 | 18:08:55.8 | 21:00:09.9 | 00:31:52.6 | 12:57:28.4 | 23:04:40.3 | 12:02:08.5 | 10:12:42.2 |   |
| Date                 | 69/04/25   | 69/04/28   | 69/05/01   | 69/05/04   | 69/05/13   | 10/90/69   | 70/90/69   | 60/90/69   | 69/06/21   | 69/06/22   | 69/06/25   | 69/06/59   | 69/07/18   | 69/07/20   | 69/08/27   | 69/08/28   | 91/60/69   | 69/09/20   | 69/09/20   | 69/09/22   | 69/09/23   | 69/09/27   | 69/09/30   | 69/12/05   | 69/12/09   | 69/12/29   | 70/01/09   | 70/01/19   | 70/01/19   | 70/01/19   | 70/01/23   | 70/02/08   |   |

TABLE XIII (Continued)

Body and Surface Wave Magnitudes at KBL

| 33 4.7 - 2.52 2.76 3.  42 5.2 4.63 3.16 3.66 3.  52 4.9 4.68 3.58 3.63 3.6  33 4.6 - 3.39 4.60 4.  33 4.6 - 3.12 3.27 3.  33 4.6 - 2.91 3.48 3.2  34 4.6 - 2.91 3.48 3.2  35 6.0 - 2.70 3.38 4.09 4.6  47 4.8 - 2.91 3.48 3.2  38 4.5 - 2.91 3.48 3.2  39 4.6 - 3.65 4.09 4.6  40 5.0 - 2.70 3.38 4.0  41 5.0 - 2.70 3.38 4.0  42 4.5 - 2.98 3.39 3.2  33 4.8 5.12 3.59 3.86 4.0  33 5.1 - 3.44 3.84 4.0  33 5.2 - 4.67 2.98 3.40 3.7  34 4.5 5.2 3.51 3.73 3.69 3.8  4.5 5.2 - 2.66 3.22 3.5  4.6 5.2 - 2.66 3.22 3.5  33 4.6 - 3.65 4.47 4.36 4.8  33 4.7 5.47 3.96 4.29 4.36  34 4.7 5.47 3.96 4.29  35 4.4 4.5 3.91 4.11 4.21  36 4.6 - 3.75 3.91 4.11 4.2  37 4.8 5.12 3.91 4.11 4.2  38 4.9 - 4.8 5.12 3.91 4.11 4.2  39 4.4 4.8 5.12 3.91 4.11 4.2  30 4.4 4.8 5.12 3.91 4.11 4.2  31 5.4 5.4 3.91 4.11 4.2  32 4.8 5.9 3.91 3.91 3.91 3.91 3.91 3.91 3.91 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date     | Event<br>Origin Time | Latitude | Longitude | Depth | NOS   | Вf       | M     | S     | 976    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|----------|-----------|-------|-------|----------|-------|-------|--------|
| 18.134:12.5         37.1N         72.0E         33         4.7         -         2.52         2.76         3           18.34:12.5         33.1N         72.0E         33         4.7         -         2.52         2.76         3           18.45:55.7         33.9N         75.4E         52         4.68         3.58         3.63         3.68         3.68         3.69         4.68         3.58         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69         3.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00/00/0  |                      |          |           |       |       |          | 4     | CDIT  | DAG    |
| 1.0136156.7         3.2.4N         76.5E         33         4.9         -         3.09         3.88         3.8           6 03447106.4         33.9N         86.3E         35         4.9         4.68         3.16         3.66         3.99         4.60         3.66         3.99         4.60         3.66         3.99         4.60         4.60         3.99         4.60         4.60         3.99         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102/22   |                      |          | •         | 33    | 4.7   | 1        | 2     | 1     | 3.17   |
| 4         5.2.5         4.63         3.16         3.66         3.66           4         15.05.57.8         3.3.N         86.8E         54         4.9         4.68         3.31         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         3.66         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103/03   |                      |          | 76.5E     | 33    | 6.4   | ı        | 0     | 00    | 3.60   |
| 0         0.3547109.4         35.9N         86.3E         52         4.9         4.68         3.58         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63         3.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 103/12   |                      | 47.ZN    | 72.3E     | 42    | 5.2   | 4.63     | 3.16  | 9     | 3.63   |
| 4         15.45:57.8         36.1N         68.8E         54         4.8         -         3.39         4.9         4.9           9         03:48:47.3         39.6K         75.4E         33         4.7         -         3.89         4.60         4.60           9         03:45:20.1         39.0N         70.8E         33         4.7         -         2.91         3.27         3.29           9         03:33:46.2         39.0N         70.8E         33         4.7         -         2.91         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.28         3.27         3.27         3.27         3.27         3.28         3.27         3.27         3.28         3.27         3.28         3.28         3.28         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20         4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07/07/10 |                      | 33.9N    | 86.3E     | 52    | 6.4   | 4.68     | 3.58  | 9     | 3.92   |
| 9         03:48:47.3         39:6N         75.4E         33         5.1         -         3.89         4.60         4.7           5         05:45:20.1         39:0N         70.7E         33         4.6         -         3.12         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27         3.27<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103/24   |                      | 36.1N    | 68.8E     | 54    | 4.8   | 1        | 3,39  | 3.99  | 4.11   |
| 5         05:45:20.1         39.0N         70.7E         33         4.6         -         3.12         3.27         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15         3.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/03/29  | ••                   | 39.6N    | 75.4E     | 33    | 5.1   | ı        | 3.89  | 7 60  | 7. 30  |
| 9 05:33:46.2 39.0N 70.8E 33 4.7 - 2.76 3.15 3.6 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /04/15   |                      | 39.0N    | 70.7E     | 33    | 4.6   | ı        | •     | 2 27  | 2 7 2  |
| 9 08:49:37.3 38.8N 75.3E 33 4.8 - 2.91 3.415 3.4   8 18:43:15.8 38.4N 69.0E 31 4.6 - 2.91 3.45 3.4   8 18:43:15.8 38.4N 69.0E 31 4.6 - 2.70 3.38 3.4   9 03:29:12.9 38.4N 69.0E 31 4.6 - 2.70 3.38 3.4   9 03:29:12.9 38.4N 70.9E 41 5.0 - 2.70 3.38 3.4   16:00:01.4 40.7N 78.4E 33 5.0 - 3.71 3.84 4.5   15:08:49.6 38.8N 70.7E 33 4.5 4.67 2.98 3.39 3.5   15:08:49.6 38.8N 73.2E 33 5.1 - 4.30 4.68 4.1   15:08:49.6 38.8N 73.2E 33 5.1 - 3.44 3.8 4.5   16:00:01.4 40.7N 78.8E 33 4.5 - 4.30 4.68 4.6   16:12:17.4 40.0N 77.8E 33 4.8 5.1 - 3.49 3.69 3.6   16:12:17.4 40.0N 77.8E 33 5.1 - 3.44 3.8 4.6 4.9   10:06:19.3 34.1N 77.0E 33 5.1 - 2.71 3.89 4.1   10:42:49.1 40.1N 77.1E 33 5.1 - 2.71 3.89 4.1   13:48:52.6 39.1N 77.1E 33 5.1 - 2.71 3.8 4.1   13:48:52.6 39.8N 77.2E 33 4.6 - 3.65 4.47 4.93 6.4   13:48:52.6 39.8N 77.2E 33 4.6 - 3.75 3.94 4.1   13:48:52.9 43.2N 81.8E 33 5.1 - 4.34 4.3 5.0 4.1   15:31:22.7 41.6N 81.8E 33 5.1 5.42 3.91 4.1   15:31:22.7 41.6N 81.8E 33 5.1 5.42 3.91 4.1   15:31:22.7 41.6N 81.8E 33 5.1 5.45 3.91 4.1   11:53:16.2 38.9N 70.4E 23 4.4 5.0   11:53:16.2 38.9N 70.4E 39 70.4E 3.91 70. | /04/19   | : 46.                | 39.0N    | 70.8E     | 33    | 2 7   |          | 27.6  | •     | V 6    |
| 4         03:29:12.9         38.4N         69:0E         31         4.6         -         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91         5.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /04/19   |                      | 38.8N    | 75.3E     | 33    | α .   |          | 2 01  | •     | 77 .   |
| 8         18:43:15.8         38.9N         70.9E         41         5.0         -         2.00         4.9         4.9           03:24:54.8         33.1N         73.4E         39         5.0         -         3.8         4.01         4.9         4.0           10:00:01.4         40.7N         78.4E         33         5.0         -         3.8         4.11         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1         4.1 <td>104/24</td> <td>:12.</td> <td>38.4N</td> <td>69.0E</td> <td>31</td> <td>7</td> <td></td> <td>•</td> <td>•</td> <td>3.42</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104/24   | :12.                 | 38.4N    | 69.0E     | 31    | 7     |          | •     | •     | 3.42   |
| 03:24:54.8         33.1N         73.4E         39         5.0         -         3.83         4.09         4.09         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         4.00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104/28   | :15                  | 38.9N    | 70.9E     | 41    |       |          | 0.00  |       | •      |
| 8         07:05:55.4         36.2N         68.8E         47         4.8         -         3.03         4.10         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.12         4.13         4.13         4.13         4.14         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11         4.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /04/30   | :54.                 | 33.1N    | 73.4E     | 300   | , ,   | 1        | 2.70  | 2.20  | 3.29   |
| 16:00:01.4       40.7N       78.4E       33       5.0       -       3.50       4.11         15:08:49.6       38.8N       70.7E       33       4.5       4.67       2.98       4.11         15:08:49.6       38.8N       70.7E       33       4.5       4.67       2.98       3.73         10:15:26.3       35.2       -       4.30       4.68       3.3       4.6       3.94       3.84         05:44:14.2       40.0N       77.8E       33       4.5       -       3.44       3.84         16:12:17.4       40.0N       77.8E       33       4.8       5.12       3.51       3.73         16:12:17.4       40.0N       77.8E       33       4.8       5.12       3.59       3.84         10:06:19.3       34.1N       77.0E       33       5.2       -       4.76       5.03         10:42:49.1       40.1N       77.1E       33       5.1       -       2.71       3.85         10:42:49.1       40.1N       77.1E       33       5.1       -       2.76       3.79       4.44         00:42:49.2       39.1N       77.2E       33       4.9       -       4.44       4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80/90/   | .55                  | 36.2N    | 68.8E     | 67    | ο α   | <b>I</b> | 0.00  | 4.03  | 4.40   |
| 15:08:49.6 38.8N 70.7E 33 4.5 4.67 2.97 3.84   501:35:26.3 25.7N 88.5E 33 5.2 - 4.30 4.68 3.89   501:35:26.3 3.4.8N 70.7E 33 5.1 - 3.44 3.84   501:35:26.3 34.8N 70.7E 33 5.1 - 3.44 3.84   501:35:26.3 34.8N 70.8E 33 4.5 5.20 3.51 3.73   16:12:17.4 40.0N 77.8E 33 4.5 - 3.37 3.69   10:06:19.3 34.1N 77.0E 33 5.1 - 2.71 3.85   20:02:25.0 36.4N 68.9E 33 5.1 - 2.71 3.82   20:02:25.0 36.4N 77.1E 33 5.0 - 3.79 4.13   10:42:49.1 40.1N 77.1E 33 5.0 - 3.79 4.14   10:42:49.1 40.1N 77.1E 33 5.0 - 3.79 4.14   10:42:49.1 39.8N 77.2E 33 4.6 - 3.55   00:55:16.1 39.8N 77.2E 33 4.6 - 3.55   10:42:19.0 39.8N 77.2E 33 4.6 - 3.75 3.94   00:55:16.1 39.8N 77.2E 33 4.6 - 3.75 3.94   15:31:29.7 41.6N 81.8E 33 5.1 5.42 3.91 4.11 1 15:31:6.2 38.9N 70.4E 33 - 4.82 3.11 3.50   11:53:16.2 38.9N 70.4E 33 - 4.82 3.11 3.50   11:53:16.2 38.9N 70.4E 33 4.6 4.64 3.04 3.01   11:53:16.2 38.9N 70.4E 33 4.7 4.64 3.01 3.01   11:53:16.2 38.9N 70.4E 33 4.4 4.64 3.01 3.01   11:53:16.2 38.9N 70.3E 5.9 4.4 4.64 3.01 3.01   11:53:16.2 38.9N 70.3E 5.9 4.4 4.64 3.01 3.01   10:30:30:30:30:30:30:30:30:30:30:30:30:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /06/12   |                      | 40.7N    | 78.4F     | 3 1   |       | 1        | 0.00  | 4.11  | 4.20   |
| 01:35:26.3       25.7N       88:5E       33       5.2      7       5.39         20:30:35.5       34.8N       73.2E       33       5.2      7       4.68         20:30:35.5       34.8N       73.2E       33       5.2       3.44       3.84         16:12:17.4       40.0N       77.8E       33       4.5        3.44       3.84         10:106:19.3       34.1N       79.3E       33       4.8       5.12       3.59       3.86         10:106:19.3       34.1N       70.4E       20       4.9        3.79       4.13         10:42:49.1       40.1N       77.1E       33       5.1        4.76       5.03         10:42:49.1       40.1N       77.1E       33       5.1        4.76       5.03         10:42:49.1       40.1N       77.1E       33       5.2        4.76       5.03         10:42:49.1       40.1N       77.1E       33       5.2        4.76       5.03         10:42:49.1       40.1N       77.1E       33       5.2        4.76       4.36         00:36:34.5       31.2N       7.3E <t< td=""><td>61/90/</td><td></td><td>38.8N</td><td>70.7E</td><td>33.0</td><td>•</td><td>1, 67</td><td>3.7T</td><td>3.04</td><td>4.14</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61/90/   |                      | 38.8N    | 70.7E     | 33.0  | •     | 1, 67    | 3.7T  | 3.04  | 4.14   |
| 20:30:35.5       34.8N       73.2E       33       5.1.       -       3.44       3.84         05:44:14.2       40.4N       78.8E       33       4.5       -       3.44       3.84         16:12:17.4       40.0N       77.8E       33       4.5       -       3.44       3.84         16:12:17.4       40.0N       77.8E       33       4.8       5.12       3.37       3.69         10:106:19.3       34.1N       79.3E       33       4.8       5.12       3.59       3.86         02:42:20.9       29.9N       70.4E       20       4.9       -       3.20       3.40         10:42:22.0       36.4N       68.9E       33       5.2       -       4.76       5.03         10:42:49.1       40.1N       77.1E       33       5.0       -       2.71       3.82         10:42:49.1       40.1N       77.1E       33       5.0       -       2.71       3.23         10:42:49.1       40.1N       77.1E       33       5.2       -       2.76       3.29         07:29:58.6       40.9N       89.4E       -       4.6       5.2       -       4.77       4.96 <t< td=""><td>/07/25</td><td></td><td>25.7N</td><td>88.5E</td><td>33</td><td></td><td>•</td><td>4.30</td><td>7. 60</td><td>2.08</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /07/25   |                      | 25.7N    | 88.5E     | 33    |       | •        | 4.30  | 7. 60 | 2.08   |
| 05:44:14.2       40.4N       78.8E       33       4.5       5.20       3.51       3.73         16:12:17.4       40.0N       77.8E       33       4.5      20       3.51       3.73         16:12:17.4       40.0N       77.8E       33       4.8       5.12       3.51       3.73       3.69         01:06:19.3       34.1N       70.4E       20       4.9       -       4.76       5.03         10:42:49.1       40.1N       77.0E       33       5.1       -       4.76       5.03         10:42:49.1       40.1N       77.1E       33       5.0       -       2.71       3.82         10:42:49.1       40.1N       77.1E       33       5.0       -       2.71       3.82         10:42:49.1       40.1N       77.1E       33       5.2       -       2.76       5.03         10:42:49.1       40.1N       77.1E       33       5.2       -       2.76       3.23         10:42:49.1       70.4S       31.2N       74.3E       3.2       -       2.66       3.2         10:42:45.6       40.9N       89.4E       -       4.6       -       2.66       4.7       4.9     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /07/26   |                      | 34.8N    | 73.2E     | 33    | 7 -   |          | 3     | 00.0  | 4.00   |
| 16:12:17.4       40.0N       77.8E       33       4.5       -       3.37       3.69         10:106:19.3       34.1N       79.3E       33       4.8       5.12       3.59       3.86         01:06:19.3       34.1N       70.4E       20       4.9       -       3.59       3.86         10:42:20.9       29.9N       77.0E       33       5.2       -       4.76       5.03         20:02:25.0       36.4N       68.9E       33       5.2       -       4.76       5.03         10:42:49.1       40.1N       77.1E       33       5.1       -       2.71       3.82         10:42:49.1       40.1N       77.1E       33       5.2       -       4.76       5.03         10:42:49.1       40.1N       77.1E       33       5.2       -       2.71       3.82         10:42:49.1       40.1N       77.7E       46       5.2       -       2.71       3.23         13:48:52.6       39.1N       77.2E       33       4.9       -       4.44       4.9         07:29:58.6       40.9N       89.4E       -       4.6       3.65       4.47       4.9         04:42:19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90/80/   | 14.                  | 40.4N    | 78.8E     | 33    | 4.5   | 5.20     | 2 5 1 | 2.04  | 4.07   |
| 01:06:19.3       34.1N       79.3E       33       4.8       5.12       3.59       3.86       4         02:42:20.9       29.9N       70.4E       20       4.9       -       3.59       3.86       4         09:49:33.5       39.9N       77.0E       33       5.2       -       4.76       5.03       3         20:02:25.0       36.4N       68.9E       33       5.2       -       4.76       5.03       3         10:42:49.1       40.1N       77.1E       33       5.0       -       27.1       3.82       3         10:42:49.1       40.1N       77.1E       33       5.2       -       4.74       3.82       3         13:48:52.6       39.1N       77.7E       46       5.2       -       3.23       4.44       3         00:36:34.5       31.2N       77.2E       33       4.9       -       4.44       3       2.66       3.23       4.9       -       4.44       3       3.9       4.44       3.9       -       4.44       3.6       -       4.44       3.9       -       4.44       4.36       4.9       -       4.44       4.9       -       4.9       - <td< td=""><td>60/80/</td><td>:17.</td><td>NO.C4</td><td>77.8E</td><td>33</td><td>•</td><td>2</td><td>3 27</td><td>0.70</td><td>0.74</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60/80/   | :17.                 | NO.C4    | 77.8E     | 33    | •     | 2        | 3 27  | 0.70  | 0.74   |
| 02:42:20.9       29.9N       70.4E       20       4.9       -       3.20       3.40       3.         10:9:49:33.5       39.9N       77.0E       33       5.2       -       4.76       5.03       5.0         20:02:25.0       36.4N       68.9E       33       5.2       -       4.76       5.03       5.0         10:42:49.1       40.1N       77.1E       33       5.0       -       2.71       3.82       3.8         13:48:52.6       39.1N       71.7E       46       5.2       -       2.71       3.82       3.8         13:48:52.6       31.2N       74.3E       46       5.2       -       2.66       3.23       4.44       3.2       3.8         00:36:34.5       31.2N       77.2E       33       4.9       -       4.47       4.92       4.9       -       2.66       3.22       3.9       4.9       -       4.9       -       4.9       -       4.9       -       4.9       -       4.9       -       4.9       -       4.9       -       4.9       -       4.9       -       4.9       -       4.9       -       4.9       -       4.9       -       4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /08/11   | :19                  | 34.1N    | 79.3E     | 33    |       | 5.12     | 3.50  | 3 86  | 20.0   |
| 09:49:33.5       39.9N       77.0E       33       5.2       -       4.76       5.03       5.0         20:02:25.0       36.4N       68.9E       33       5.1       -       2.71       3.82       3.82         10:42:49.1       40.1N       77.1E       33       5.0       -       2.71       3.82       3.83         13:48:52.6       39.1N       71.7E       46       5.2       -       3.79       4.13       4.1         13:48:52.6       39.1N       71.7E       46       5.2       -       2.66       3.23       4.44       3.2         00:36:34.5       31.2N       74.3E       3       5.2       -       2.66       3.22       3.2       3.2       4.44       3.2         07:29:58.6       40.9N       89.4E       -       4.6       3.65       4.47       4.92       4.       4.9       -       4.36       4.9       -       4.36       4.3       4.9       -       4.36       4.9       -       4.36       4.9       -       4.36       4.9       -       4.36       4.9       -       4.36       4.9       -       4.36       4.9       -       4.36       4.9       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11/60/   | 20                   | 29.9N    | 70.4E     | 20    | 6.4   |          | 3 20  | 3 7.0 | 2 70   |
| 20:02:25.0       36.4N       68.9E       33       5.1       -       2.71       3.82       3.82       3.82       3.82       3.82       3.82       3.82       3.82       3.82       3.82       3.82       3.82       3.82       3.82       3.82       3.82       3.82       3.79       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13       4.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /09/14   | 33                   | 39.9N    | 77.0E     | 33    | 5.2   | ı        | 7. 76 | 7.40  | 0.10   |
| 10:42:49.1       40.1N       77.1E       33       5.0       -       3.79       4.13       4.35         13:48:52.6       39.1N       71.7E       46       5.2       -       3.79       4.14       3.5         00:36:34.5       31.2N       74.3E       33       5.2       -       2.66       3.22       3.2         07:29:58.6       40.9N       89.4E       -       4.6       3.65       4.47       4.92       4.         03:55:16.1       39.8N       77.2E       33       4.9       -       4.34       4.9       4.         04:57:32.9       43.2N       81.2E       24       5.2       5.03       4.32       4.96       4.         04:57:32.9       41.6N       81.8E       33       5.1       5.42       3.91       4.11       4.         15:31:29.7       41.6N       81.8E       33       4.7       5.47       3.96       4.29       4.         22:45:04.7       41.7N       81.7E       33       -       4.82       3.11       3.50       3.71         22:50:47.3       38.9N       70.4E       33       2.95       3.91       4.4       4.64       4.64       4.64       4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81/60/   |                      | 36.4N    | 68.9E     | 33    | 5.1   | ı        | 2 73  | 20.0  | 27.6   |
| 13:48:52.6       39:1N       71.7E       46       5.2       -       3.23       4.44       3.2         00:36:34.5       31.2N       74.3E       33       5.2       -       2.66       3.22       3.2         07:29:58.6       40.9N       89.4E       -       4.6       3.65       4.47       4.92       4.         03:55:16.1       39.8N       77.2E       33       4.6       -       4.34       4.36       4.         04:42:19.0       39.8N       77.2E       33       4.6       -       3.75       3.94       4.         04:57:32.9       43.2N       81.2E       24       5.2       5.03       4.32       4.96       4.         02:03:37.4       41.6N       81.8E       33       4.7       5.42       3.91       4.11       4.         15:31:29.7       41.6N       81.8E       33       4.7       5.47       3.96       4.29       4.         22:45:04.7       41.7N       81.7E       33       -       4.82       3.11       3.50       3.71       3.93         22:50:47.3       38.9N       70.3E       59       4.4       4.64       4.64       3.04       4.34       3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/02    |                      | 40.1N    | 77.1E     | 33    | 5.0   | - 1      | 3 79  | 70. V | 7,00   |
| 00:36:34.5 31.2N 74.3E 33 5.2 - 2.66 3.22 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/00    |                      | 39.1N    | 71.7E     | 97    | 5.2   | ı        | 3.23  | 77.7  | 7 2 80 |
| 07:29:58.6       40.9N       89.4E       -       4.6       3.65       4.47       4.92       4         03:55:16.1       39.8N       77.2E       33       4.9       -       4.34       4.36       4         04:42:19.0       39.8N       77.2E       33       4.6       -       4.34       4.36       4         04:42:19.0       39.8N       77.2E       33       4.6       -       3.75       3.94       4         04:57:32.9       43.2N       81.2E       24       5.2       5.03       4.32       4.96       4         02:03:37.4       41.6N       81.8E       33       5.1       5.42       3.91       4.11       4         15:31:29.7       41.7N       81.8E       33       4.7       5.47       3.96       4.29       4         22:45:04.7       41.7N       81.7E       33       -       4.33       2.95       3.71       3         11:53:16.2       38.9N       70.4E       33       -       4.64       4.64       3.04       3.93       3       3       3       3       3       3       3       3       3       3       3       3       3       3 <t< td=""><td>10/14</td><td></td><td>31.2N</td><td>74.3E</td><td>33</td><td>5.2</td><td>ı</td><td>2.66</td><td>•</td><td>3 23</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10/14    |                      | 31.2N    | 74.3E     | 33    | 5.2   | ı        | 2.66  | •     | 3 23   |
| 03:55:16.1 39.8N 77.2E 33 4.9 - 4.34 4.36 4 4.36 04:42:19.0 39.8N 77.2E 33 4.6 - 3.75 3.94 4 6.04:57:32.9 43.2N 81.2E 24 5.2 5.03 4.32 4.96 4 6.20 02:03:37.4 41.6N 81.8E 33 5.1 5.42 3.91 4.11 4.11 4.15:316.2 38.9N 70.4E 33 - 4.33 2.95 3.71 3.50 22:50:47.3 38.9N 70.3E 59 4.4 4.64 3.04 3.04 3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/14    |                      | N6.07    | 89.4E     | 1     | 9.4   | 9        | 27 7  | 1 0   | 7. 77  |
| 04:42:19.0 39.8N 77.2E 33 4.6 - 3.75 3.94 4 4 6 04:57:32.9 43.2N 81.2E 24 5.2 5.03 4.32 4.96 4 4 41.6N 81.8E 33 5.1 5.42 3.91 4.11 4 15:31:29.7 41.7N 81.7E 33 - 4.82 3.11 3.50 3 11:53:16.2 38.9N 70.4E 33 - 4.33 2.95 3.71 3 22:50:47.3 38.9N 70.3E 59 4.4 4.64 3.04 3.04 3.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/15    | ••                   | 39.8N    | 77.2E     | 33    | 6.4   |          | 72 7  |       | 100    |
| 04:57:32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/15    | ••                   | 39.8N    | 77.2E     | 33    | 7 7   | 1        | 10.0  |       | 4.50   |
| 02:03:37.4 41.6N 81.8E 33 5.1 5.42 3.91 4.11 4 15:31:29.7 41.6N 81.8E 33 4.7 5.47 3.96 4.29 4 22:45:04.7 41.7N 81.7E 33 - 4.82 3.11 3.50 3 11:53:16.2 38.9N 70.4E 33 - 4.33 2.95 3.71 3 22:50:47.3 38.9N 70.3E 59 4.4 4.64 3.04 3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/16    | :32                  | 43.2N    | 81.2E     | 24    | 2 2   | -        | 7.70  | 1 C   |        |
| 15:31:29.7 41.6N 81.8E 33 4.7 5.47 3.96 4.29 4 22:45:04.7 41.7N 81.7E 33 - 4.82 3.11 3.50 3 11:53:16.2 38.9N 70.4E 33 - 4.44 4.64 3.04 3.93 3.71 3 22:50:47.3 38.9N 70.3E 59 4.4 4.64 3.04 3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/29    | :37                  | 41.6N    | 81.8E     | 33    |       | 3        | 3 91  | h ~   | •      |
| 22:45:04.7 41.7N 81.7E 33 - 4.82 3.11 3.50 3 11:53:16.2 38.9N 70.4E 33 - 4.33 2.95 3.71 3 22:50:47.3 38.9N 70.3E 59 4.4 4.64 3.04 3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11/29    | ••                   | 41.6N    | 81.8E     | 33    | 7 - 7 | 5.47     | •     | 7. 70 | •      |
| 11:53:16.2 38.9N 70.4E 33 - 4.33 2.95 3.71 3 22:50:47.3 38.9N 70.3E 59 4.4 4.64 3.04 3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/01    | 04                   | 41.7N    | 81.7E     | 33    | 1     | 00       | 3.11  | 1 10  | 3.40   |
| 22:50:47.3 38.9N 70.3E 59 4.4 4.64 3.04 3.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12/08    | ~                    | 38.9N    | 70.4E     | 33    | 1     | (        | 2.95  | 1     | 3 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/08    | : 50:                | •        | •         | 59    | 4.4   |          | 0     | 3,93  | 2 63   |

TABLE XIII (Continued)
Body and Surface Wave Magnitudes at KBL

|                      | DVS        | 7 3.9      | 8 5.1      | 3          | 1 3        | 3.3        | 7          | 4.2        | ~          | 7          | 2          | 5                | 7          | 6-7        | 3          | 7          | 7          |            | יינו       | י רי       |            | יטי        | ) ~        | ) 4        | 7              | 7          | 7          | 7          | 5.25       |            | 10 %       | 4.71     | •          | •          | 4.09       | •          |             |
|----------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|------------|------------|----------|------------|------------|------------|------------|-------------|
| M<br>S<br>ME         |            | 00         | 4.9        | 4.5        | 3.6        | m          | ιΛ         | 5.01       | ·          | 4.20       | 7          | 5                | 4.57       | 7          | n          | 7          | 3          | m          | ~          | · m        | 7          | . LC       | 7          |            |                |            |            | 3.44       |            |            | 15.7       | •        | •          | •          | 4.00       |            |             |
| Д                    |            | 2 3.4      | 5          | 4.2        | 6 2.8      | 3.0        | 4.8        | 3.7        | 3.6        | 1 3.       | 4.33       | 5.56             | 1 4.31     | 4.51       |            | •          | 3.74       | 3.29       | ` '        | (.)        | 7          | 5.12       | (*)        | (F)        | 4.65           | 7          | ř          | 3.90       | 4.85       |            | 4.50       |          |            |            | 00.0       | •          |             |
| NOS                  |            | 0.0        | ٥.         | 7.         | .6 5.      | .8         |            | .2 4.      |            | - 5.4      | -3         | 00.              | .3 5.7.    | ٦ ٣.       | 2          | 4.8        | 5          | 5          | 3 4.11     | 1 5        | 7 8        | - 7        | 5 5.36     | 8          | 6              | Ŋ          | 4          | 9 4.37     | 9          | 6 5.73     | 2          |          | 1          |            |            |            | 7           |
| N<br>Depth           |            | 33         |            |            |            |            |            | 7          | 7          |            |            | S                | 5          | 2          | S          | 4          | 7          | 7          | 4          | 5          | 4          | 5          | 4          | 4          | 4              | 4          | 5.         | 7          | 2          | 5.         | 5.         | 4        | 5.         | 5          |            | יט ו       |             |
| Longitude            |            | /E         | 1E         | 1 E        | 35         | 7.         | 1 (        | 6E         |            | LE         | 1E         | ZE               |            |            |            |            |            |            |            |            | 9E         |            |            |            |                |            |            |            |            |            |            |          |            |            |            |            |             |
|                      | 6.6        | 7/         | 60         | . 62       | 0.0        | .00        | 99.        | 72.        | 95.        | .//        |            | o o              | 6          | •          | •          | •          |            | /1.        | 92.        | 79.        | 72.9       | 84.        | •          |            | 96.4           | •          |            | 85.0E      |            | •          | •          | •        | •          | •          | 79.3E      |            |             |
| Latitude             |            | 29.2N      |            |            | 43 ON      | 25 2N      | NZ - CZ    | •          | 24. IN     | 20 CT      | 35 EN      | 10.00<br>N 2 1.7 | 41.5N      | NA 76      | 20. CN     | NO - 60    | No. 60     | •          | NO.07      |            |            | 5 .        |            |            | 25.3N          |            | 32.2N      | 41 4N      | NE TY      | •          | •          | •        | •          | •          | 41.3N      | 41.3N      |             |
| Event<br>Origin Time | 09:35:25.8 | 19:01:20.3 | 23:52:16.3 | 20:15:40.8 | 14:21:42.9 | 09:10:35.7 | 11:45.24 8 | 5 15.95.00 | 23.50.76 5 | 22.57.17 6 | 13:54:17 7 | 20:54.28 6       | 21:01:54.9 | 08:16:19 6 | 20:00:31 5 | 03:02:57 0 | 07.24.14.3 | 09-15-22-0 | 14.30.53 1 | 14.67.65.7 | 00.33.22 5 | 17.17.40 0 | 00-30-22 2 | 11.55.50 0 | 21 - 30 - 00 5 | 20.76.58 3 | 10:34:49.0 | 07:39:37.1 | 22:04-13 4 | 22:15:49 7 | 23.17.32 0 | 00.58.33 | 10.56.39.4 | 17:00:38./ | 13:46:50.5 | 15:20:12.0 |             |
| Date                 | 70/12/30   | 71/01/04   | 71/01/08   | 71/01/30   | 71/02/01   | 71/02/05   | 71/02/21   | 71/03/01   | 71/03/11   | 71/03/15   | 71/03/24   | 71/03/24         | 71/03/24   | 71/03/31   | 71/03/31   | 71/04/06   | 71/04/18   | 71/04/21   | 71/04/21   | 71/04/27   | 71/05/03   | 71/05/14   | 71/05/27   | 71/05/30   | 71/05/30       | 71/06/07   | 71/06/06   | 71/06/15   | 71/06/15   | 71/06/15   | 71/06/15   | 71/06/16 | 71/06/16   | 71/90/17   | 01/00/10   | /1/90/1/   | 11111111111 |

TABLE XIII (Continued)

Body and Surface Wave Magnitudes at KBL

|             | Event       |          |           |            | SON        |                |        | 2     |                                         |
|-------------|-------------|----------|-----------|------------|------------|----------------|--------|-------|-----------------------------------------|
| Date        | Origin Time | Latitude | Longitude | Depth      | مه         | a <sup>c</sup> | Prague | S M&B | DVS                                     |
| 71/06/19    | 21:08:45.8  | 41.5N    | 79. 4F    | 33         | ,          |                | i      | ,     |                                         |
| 71/06/22    | 10:25:32.9  | 41.3N    | 79 35     | ) /<br>) L | , ,        | 5.50           | 3.54   | 3.54  | 3.94                                    |
| 71/07/01    | 14:37:25.7  | 36.7N    | 68.3F     | 33         | 4.0        | 5.09           | 3.29   | 3.66  | 3.70                                    |
| 71/07/03    | 04:26:22.1  | 41.3N    | 70 3E     | 7.         | 0.0        | ' .            | 3.48   | 3.74  | 4.22                                    |
| 71/07/17    | 15:00:55.4  | 26.5N    | 03 25     | /T         | 4 r        | 2.11           | ı      | 1     | ı                                       |
| 71/07/24    | 11:43:38 8  | 30 SN    | 73.2E     | 44         | 5.0        | ιį             | 4.80   | 5.31  | 5.05                                    |
|             | 20.13.14.1  | NO. 67   | 73.2E     | 33         | 2.6        | 78.4           | 4.12   | 4.66  | 4.66                                    |
| 71/08/07    | 15.21.62    | 41. JN   | /9.3E     | 33         | 4.5        | 5.34           | 3.77   | 3.79  | 4.19                                    |
| 71/08/09    | 01.02.16    | 36. LN   | 77.7E     | 33         | <b>7.8</b> | ı              | 4.21   | 4.55  | 4.71                                    |
| 71 /06 / 30 | 0T:07:T0    | 42.IN    | 83.4E     | 33         | 4.2        | ı              | 3,33   | 3.68  | 3.68                                    |
| 71/00/23    | 15:10:56.9  | 36.5N    | 78.5E     | 33         | 5°0        | 1              | 2.78   | 3.81  | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| 17/09/11    | 09:13:51.5  | 32.3N    | 91.8E     | 33         | 5.0        | ı              | 4.39   | 75.7  | 7.67                                    |
| 11/09/25    | 08:53:20.9  | 37.8N    | 69.7E     | 56         | 4.5        | 3.86           | 3 21   | , c   | 2 007                                   |
| /1/10/01    | 16:27:47.7  | 38.6N    | 69.8E     | 36         | 0 7        | •              | 77.7   | 10.0  | 70.0                                    |
| 71/10/24    | 08:59:04.6  | 28.3N    | 87 2F     | 2 3        | , ,        | ı              | 4.23   | 4.36  | 4.84                                    |
| 71/10/28    | 13:30:57.1  | 41 8N    | 72 / 12   | † 0        | 7.0        | ı              | 3.68   | 3.27  | 3.99                                    |
| 71/10/29    | 17:16:52 1  | 3/. 1M   | 74.45     | 77         | 5.5        | ı              | 76.7   | 5.08  | 5.42                                    |
| 71/10/31    | 15:54.47 9  | NI - 50  | 86.3E     | 33         | 2.0        | 5.59           | 4.01   | 4.07  | 4.35                                    |
| 71/11/19    | 01:00:01    | 71 ON    | 70./E     | 33         | 4.6        | 4.79           | 3.49   | 3.56  | 3.76                                    |
| 71/11/24    | 08-23-26    | NZ 36    | 72.45     | 5.5        | 4.9        | ı              | 4.38   | 4.37  | 4.86                                    |
| 71/12/06    | 08:33:00    | N/ 000   | /3.3E     | 33         | 5.1        | ı              | 2.86   | 3.04  | 3.42                                    |
| 71/12/04    | 19 12 10 1  | 27.9N    | 87.9E     | 32         | 5.0        | 1              | 3.23   | 3.53  | 3 6                                     |
| 71/77/17    | 13:41:39.8  | 41.4N    | 79.2E     | 33         | 4.7        | 06.4           | 3 52   | 2,4   |                                         |
| /1/12/12    | 22:27:41.1  | 39.5N    | 73.2E     | 33         | 0 7        |                | 20.0   | 20.0  | 5.93                                    |
| 71/12/27    | 20:59:34.1  | 35 1N    | 72 15     | ) 6        | 0 .        | i              | 2.60   | 3.67  | 4.13                                    |
| 71/12/29    | 22:27:02.2  | 25 1N    | 13.IE     | 10         | 4.0        | ı              | 3.65   | 3.97  | 4.31                                    |
| 71/12/30    | 23.35.27 6  | 20 ox    | 94./E     | 33         | 5.5        | ı              | 4.49   | 5.10  | 4.72                                    |
| 00 /== /= / |             | 39.8N    | //.5E     | 33         | 6.4        | ı              | 3.87   | 3.97  | 4.32                                    |



Figure 17. M-m data for the events in an extended area between 24-45° and 68-100°E. M values were computed at KBL. m values are those of NOS. Triangles are the events further investigated.

line  $M_s = 1.38m_b - 3.45$  was used as the dividing line between "anomalous" and normal events; it lies midway between the earthquake and explosion lines of Marshall and Basham (1972). Eleven points lie below the line (the events in question are marked in Table XIII by a star). One of them, the event in Sinkiang, is a presumed explosion.

To investigate these eleven events further, film chips were ordered from NOS for the stations NUR, TRI, SHI, POO, SHL, QUE, BUL, AAE, CTA, COL, NDI in addition to KBL. P wave and Rayleigh wave amplitudes were read and magnitudes computed. The recomputed magnitudes are shown in Table XIV and are plotted against Marshall and Basham's 95% confidence limits for earthquakes and explosions in Figure 18. The filled circles in this figure are the M-m<sub>b</sub> pairs. The figure shows that only two of the points lie close to the 95% confidence limit of Eurasian explosions; one of these points is an explosion. The remaining points are close to the 95% line for earthquakes. Since there is a considerable uncertainity in determining these lines, it is not clear that anything is unusual, since the number of "anomalous" points is about 5% of the total events considered. Thus the population searched is not much different from that presented by Marshall and Basham. The most anomalous earthquake is located in the Tadzhik SSSR, but the point is based on only three m<sub>b</sub> and one M<sub>s</sub> reading.

Body and Surface Wave Magnitudes for Events which appear to be anomalous at KBL

| Date     | Event<br>Origin Time | Latitude | Longitude | Depth | NOS | Station | €°   | M<br>Frague | M&B  | DVS  |
|----------|----------------------|----------|-----------|-------|-----|---------|------|-------------|------|------|
| 71/12/27 | 20:59:34.1           | 35.1N    | 73.1E     | 10    | 5.4 | CHC     | 4.56 |             | ı    | ı    |
|          |                      |          |           |       |     | NUR     | 5.13 | ı           | ı    | ı    |
|          |                      |          |           |       |     | QUE     | 5.80 | 3.67        | 4.09 | 4.17 |
|          |                      |          |           |       |     | KBL .   | ı    | 3.65        | 3.97 | 4.31 |
|          |                      |          |           |       |     | Average | 5.16 | 3.66        | 4.03 | 4.24 |
| 71/10/24 | 08:59:04.6           | 28.3N    | 87.2E     | 77    | 5.1 | CHC     | 4.10 | ı           | 1    | 1    |
|          |                      |          |           |       |     | COL     | 4.89 | •           | 10   | ,    |
|          |                      |          |           |       |     | NUR     | 5.24 | ı           | D    | ı    |
|          |                      |          |           |       |     | QUE     | 4.16 | 1           | ,    | ı    |
|          |                      |          |           |       |     | KBL     | ,    | 3.68        | 3.27 | 3,99 |
|          |                      |          |           |       |     | Average | 4.60 | 3.68        | 3.27 | 3.99 |
| 71/90/17 | 15:20:12.0           | 41.3N    | 79.4E     | 33    | 5.2 | COL     | 66.4 | 1           | 1    | 1    |
|          |                      |          |           |       |     | IQN     | 4.71 | 1           | 1    | ı    |
|          |                      |          |           |       |     | NUR     | 4.99 | ı           | ,    | E)   |
|          |                      |          |           |       |     | QUE     | 4.62 | 3.17        | 3.70 | 3.51 |
|          |                      |          |           |       |     | KBL     | 5.44 | 3.49        | 3.67 | 3.90 |
|          |                      |          |           |       |     | Average | 4.95 | 3,33        | 3.69 | 3.70 |
| /0/10/14 | 00:36:34.5           | 31.2N    | 74.3E     | 33    | 5.2 | NDI     | 1    | 2.81        | 3.70 | 3.45 |
|          |                      |          |           |       |     | P00     | 5.39 | 3.60        | 3.85 | 3.97 |
|          |                      |          |           |       |     | QUE     | 5.24 | 2.95        | 3.81 | 3.47 |
|          |                      |          |           |       |     | SHL     | 4.23 | 3.02        | 3.72 | 3.34 |
|          |                      |          |           |       |     | KBL     | ;    | 2.66        | 3.22 | 3.21 |
|          |                      |          |           |       |     | Average | 96.4 | 3.01        | 3.66 | 3.49 |
| 70/04/28 | 18:43:15.8           | 38.9N    | 70.9E     | 41    | 2.0 | BUL     | 5.10 | ı           | 1    | 1    |
|          |                      |          |           |       |     | COL     | 4.90 | ,           | ı    | 1    |
|          |                      |          |           |       |     | ION     | 5.79 | 3.79        | 4.12 | 4.09 |
|          |                      |          |           |       |     | P00     | 3.55 | 4.13        | 4.17 | 4.44 |
|          |                      |          |           |       |     | QUE     | 5.41 | 3,35        | 3.65 | 3.79 |
|          |                      |          |           |       |     | KBL     | 1    | 2.70        | 3,38 | 3.29 |
|          |                      |          |           |       |     | Average | 4.95 | 3.48        | 3.83 | 3.90 |

IABLE XIV (Continued)
Body and Surface Wave Magnitudes for Events
which appear to be anomalous at KBL

| 5.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date     | Event<br>Origin Time | Latitude | Longitude | Depth | NOS<br>m, | Station | Ę    | M<br>S<br>Fraoue | M<br>S<br>MER | AVIC |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|----------|-----------|-------|-----------|---------|------|------------------|---------------|------|
| NUR 4.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70/02/22 | 06:56:20.4           | 37.1N    | 72.0E     | 33    | 4.7       | NDI     |      | 1                |               | DAS  |
| SHI 4.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                      |          |           |       |           | NUR     | 4.21 | 1                | 1             | 1    |
| National N   |          |                      |          |           |       |           | SHL     | 4.51 | ı                | 1             | ı    |
| ## 10:12:42.2 39.7N 73.7E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                      |          |           |       |           | KBL     | ı    | 2.52             | 2.76          | 3,17 |
| COL 4.84 - 4.13 4.42  NUR 4.97 - 3.06 4.45  NUR 4.97 - 4.02  Average 4.97 3.82 4.19  L6:14:58.8 41.4N 88.3E - 5.1 Average 4.97 3.12  NUI 5.03 - 6.0  NUI 5.04 - 4.0  NUI 6.14.5  NUI 6.16  NUR 6.16  | 70/02/08 | 10:12:42.2           |          | 73 75     | 37    | L         | Average | 4.62 | 2.52             | 2.76          | 3.17 |
| OCIC 4.44 4.13 4.42  NDI 5.72 3.90 4.45  NDI 5.72 3.90 4.45  FOO 4.49 4.02 4.25  FOO 4.49 4.97 3.63  AVETAGE 4.97 3.82 4.19  NDI 4.50 3.90 3.95  POO 4.44 4.93  RBL 4.50 3.90 3.95  BLI 4.14N 88.3E - 5.1 AVETAGE 4.93 3.82  NDI 5.72 3.91 3.95  AVETAGE 4.68 4.19 3.92  SHI - 4.93 3.82  SHI - 4.93 3.51  SHI - 4.93 3.52  SHI - 4.18  SHI - 4.10  SHI     |          |                      |          | 13.15     | 40    | 5.2       | BUL     | 90.5 | 1                | ı             | 1    |
| NUR 4.97 - 4.45  NUR 4.97 - 3.90 4.45  NUR 4.97 - 3.90 4.45  REL 3.24 4.02 4.25  REL 3.24 4.02 4.25  REL 3.24 3.63  SHI 4.50 3.90 3.95  REL 4.68 4.97 3.92 3.82  SHI 4.50 3.90 3.95  REL 4.68 4.93 3.92  SHI 4.50 3.92  SHI 4.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                      |          |           |       |           | CHC     | 1    | 4.13             | 4.42          | 4.13 |
| NDI 5.72 3.90 4.45  NUM 4.24 4.02  POO 4.24 4.02 4.25  REL - 3.24 3.63  AVERTAGE 4.97 3.82 4.19  NDI 4.50 3.90 3.95  NDI 4.50 3.90 3.95  POO 4.44 4.02 4.25  NDI 4.50 3.90 3.95  SHI - 4.93 4.52  KBL - 4.93 4.52  SHI - 4.93 4.52  NDI 5.04 3.92 3.82  SHI - 4.93 4.52  NDI 5.05 3.90 3.95  SHI - 4.93 3.82  SHI - 4.93 3.82  SHI - 3.51  NDI 5.07 3.90  SHI - 4.93 3.82  SHI - 3.95  SHI - 3.95  SHI - 4.93 3.82  SHI - 3.90  SHI - 3.90  SHI - 3.90  SHI - 3.90  SHI 3.90  SHI 3.90  SHI 3.90  SHI 3.90  SHI 3.90  SHI 3.95  SHI 3.90  SHI 3.90  SHI 3.90  SHI 3.90  SHI - 3.91  SHI 3.12  SHI - 3.91  SHI 3.12  SHI 3.12  SHI - 3.64  SHI - 3.86   |          |                      |          |           |       |           | COL     | 4.84 | 1                | ı             | 1    |
| NUM 4.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                      |          |           |       |           | IQN     | 5.72 | 3.90             | 4.45          | 4.31 |
| POO 4.24 4.02 4.25 KB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                      |          |           |       |           | NUR     | 4.97 | 1                | ı             | ı    |
| MKBL - 3.24 3.63  Average 4.19  BUL 5.04 - 4.19  BUL 6.50 3.90 3.95  POO 4.44 - 7.50  SHI - 4.93 3.82  Average 4.77 4.14  SR.12 - 5.1 Average 4.77 4.14  RBL 6.00 5.41  COL 5.57 - 7.1  COL 5.50 - 7.1  COL 5. |          |                      |          |           |       |           | P00     | 4.24 | 4.02             | 4.25          | 4.29 |
| 15:50:15.2 25.6N 94.7E 20 5.4 Average 4.97 3.82 4.19  NDI 4.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |          |           |       |           | KBL     | 1    | 3.24             | 3.63          | 3.76 |
| 16:14:58.8 41.4N 88.3E - 5.1 Average 4.77 4.14 3.95  16:14:58.8 41.4N 88.3E - 5.1 Average 4.77 4.14 3.95  12:50:15.2 25.9N 95.3E 50 5.2 BUL 4.86 4.98 5.36  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:15.2 25.9N 95.3E 50 5.2 RN 6.00 - 3.55  12:50:16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69/09/30 | 23:13:28.8           | 25.6N    | 37 70     | C     | ì         | Average | 4.97 | 3.82             | 4.19          | 4.12 |
| NDI 4.50 3.90 3.95  POO 4.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                      |          | 24.15     | 07    | 7.4       | BUL     | 5.04 | 1                | 1             | 1    |
| HOO 4,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                      |          |           |       |           | ION     | 4.50 | 3.90             | 3,95          | 4.21 |
| GUE   5.49   3.92   3.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                      |          |           |       |           | P00     | 4.44 | 1                | ſ             | 1    |
| HSH 4.36 3.82 4.52  KBL 4.36 3.82 3.51  Average 4.77 4.14 3.95  L6:14:58.8 41.4N 88.3E - 5.1 Average 4.77 4.14 3.95  COL 5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                      |          |           |       |           | QUE     | 5.49 | 3.92             | 3.82          | 4.14 |
| KBL 4.36 3.82 3.51  Average 4.77 4.14 3.95  COL 5.57 COL 5.57 COL 5.03 COL 5.04 - COL 5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                      |          |           |       |           | SHI     | 1    | 4.93             | 4.52          | 5.15 |
| 16:14:58.8 41.4N 88.3E - 5.1 CHG 4.68 COL 5.57 COL 5.57 COL 5.03 COL 5.03 COL 5.03 COL 5.03 COL 5.03 COL 5.04 - COL 5.06 - COL                                                                                                                                                                                   |          |                      |          |           |       |           | KBL     | 4.36 | 3.82             | 3.51          | 4.05 |
| COL 5.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69/09/22 | 16:14:58.8           |          | 38 35     |       |           | Average | 4.77 | 4.14             | 3.95          | 4.39 |
| COL 5.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                      |          | 70.00     | ı     | 7.T       | CHC     | 4.68 | 1                | 1             | 1    |
| NDI 5.03 – — POO 5.41 – — QUE 4.69 3.72 3.52 SHL 4.15 – — KBL – 3.31 3.12 KBL – 3.31 3.12 KBL – 3.31 3.12 KBL – 3.35 COL 5.2 BUL 4.86 4.98 5.36 TRI 6.00 – — SHL – 3.55 4.20 COL 5.16 – — NUR 5.69 – — POO 4.19 3.80 4.12 QUE 5.34 3.86 4.18 KBL – 3.64 3.72 Average 5.21 3.97 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                      |          |           |       |           | COL     | 5.57 | ı                | t             | 1    |
| POO 5.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                      |          |           |       |           | NDI     | 5.03 | ı                | 1             | 1    |
| QUE 4.69 3.72 3.52 SHL 4.15 — — KBL — 3.31 3.12 Average 4.92 3.16 3.32 BUL 4.86 4.98 5.36 TRI 6.00 — — SHL — 3.35 4.20 COL 5.16 — — NUR 5.69 — — POO 4.19 3.86 4.18 KBL — 3.64 3.72 Average 5.21 3.97 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                      |          |           |       |           | P00     | 5.41 | ı                | ı             | ı    |
| SHL   4.15   -   -   -     KBL   -   3.31   3.12     Average   4.92   3.16   3.32     BUL   4.86   4.98   5.36     TRI   6.00   -   -     SHL   -   3.55   4.20     COL   5.16   -   -     NUR   5.69   -   -     POO   4.19   3.80   4.18     KBL   -   3.64   3.72     Average   5.21   3.97   4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                      |          |           |       |           | QUE     | 69.5 | 3.72             | 3.52          | 3.98 |
| 12:50:15.2 25.9N 95.3E 50 5.2 BUL 4.86 4.92 3.16 3.32 8UL 4.86 4.98 5.36 TRI 6.00 - SHL - 3.55 4.20 COL 5.16 - SHO - SHO 4.19 3.80 4.12 POO 4.19 3.86 4.18 KBL - 3.564 3.72 Average 5.21 3.97 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                      |          |           |       |           | SHL     | 4.15 | 1                | 1             | 1    |
| 12:50:15.2 25.9N 95.3E 50 5.2 BUL 4.86 4.98 5.36 TRI 6.00 - SHL - 3.55 4.20 COL 5.16 - SHO |          |                      |          |           |       |           | KBL.    | ,    | 3,31             | 3.12          | 3.62 |
| TRI 6.00 SHL - 3.55 4.20  SHL - 3.55 4.20  COL 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69/04/28 | 12:50:15.2           | 25.9N    | 45 36     | 0     |           | Average | 4.92 | 3.16             | 3.32          | 3.80 |
| 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |          | 70.00     | 20    | 7.5       | BUL     | 4.86 | 4.98             | 5.36          | 4.98 |
| 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |          |           |       |           | TRI     | 00.9 | ı                | 1             | 1    |
| 5.16<br>5.69<br>4.19 3.80 4.12<br>5.34 3.86 4.18<br>- 3.64 3.72<br>5.21 3.97 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                      |          |           |       |           | SHL     | ı    | 3.55             | 4.20          | 4.22 |
| 5.69 – – – – – – – – – – – – – – – – – – –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                      |          |           |       |           | 700     | 5.16 | 1                | 1             |      |
| 4.19 3.80 4.12<br>5.34 3.86 4.18<br>- 3.64 3.72<br>5.21 3.97 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                      |          |           |       |           | NUR     | 5.69 | 1                | ı             | 1    |
| 5.34 3.86 4.18<br>- 3.64 3.72<br>5.21 7.97 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |          |           |       |           | P00     | 4.19 | 3.80             | 4.12          | 4.06 |
| 5.21 3.64 3.72<br>5.21 3.97 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                      |          |           |       |           | QUE     | 5.34 | 3.86             | 4.18          | 3.86 |
| 5.21 3.97 4.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                      |          |           |       |           | KBL     | 1    | 3.64             | 3, 72         | 3.87 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |          |           |       |           | Average | 5.21 | 3.97             | 4.14          | 4.20 |



Figure 18. Revised M<sub>s</sub>-m<sub>b</sub> values of apparently anomalous events in the extended area. 95% confidence limits of earthquake and explosion populations marked (after Marshall and Basham, 1972).

## SUMMARY AND CONCLUSIONS

The analysis of low  ${\rm M}_{_{\mbox{\scriptsize S}}}$  events in the Himalayan region using an expanded network gave the following conclusions:

- 1. The M<sub>S</sub> values are confirmed to be relatively low compared to m<sub>b</sub> values. Additional P-wave teleseismic readings did not change the m<sub>b</sub> values appreciably.
- 2. Clear dilatations were observed at for many events, indicating that they are earthquakes rather than explosions.
- 3. Depth and location calculations using various constraints and a common network failed to provide refinement in the source location or depth due to the poor quality and internal inconsistencies of data. The calculations indicate, however, that most of the events are shallower than 80 km.
- 4. pP readings at teleseismic stations, although doubtful, also indicate that most of the events are shallow or normal in depth.
- 5. The long period S to Rayleigh amplitude ratios classify the events as earthquakes.
- 6. Anomalously thick crust in the source region is not likely to cause the low  ${\rm M}_{_{\rm S}}$  values.
- 7. The event cluster centered at 30°N latitude and 95°E longitude consists of many similar events with almost identical long period seismograms. Love waves, if present, are unclear.
- 8. Three events on the Himalayan front show long-period S, two long-period P and two Love waves. The long period S to Rayleigh amplitude ratio is characteristic of earthquakes.
- 9. The short-period S to P ratio, where available, is characteristic of earthquakes.
- 10. Search for additional anomalous events in a wider area did not indicate any additional contiguous areas where such events occur. The low  ${\tt M}_{\tt S}$  events found can be explained by normal scatter of data and amount to a few percent of the total data studied.

The above results suggest that even low  $(M_s-m_b)$  events such as those discussed by Der (1973) can be shown to be earthquakes by careful analysis of the short-period data from close-in stations. Long-period shear to Rayleigh amplitude ratios seem also to classify them as earthquakes. The data quality is poor enough, however, that a fully satisfying discussion of the events is impossible. In particular we remain uncertain about the cause of the low  $(M_s-m_b)$  values; and we cannot be certain that the long-period shear wave discriminants are completely reliable because the measurements were made at distances of only 5° for which distance there are no data in the discrimination data bases of von Seggern (1972) or of Blandford and Clark (1974). Even if such data were available it would have to be carefully analyzed from a theoretical point of view to ensure that the unusually thick crust in Tibet does not bias the results. These remarks point out possible subjects for future research, which should become possible with the aid of high-quality data from the expanded VELA network.

### REFERENCES

- Ahner, R. O., R. R. Blandford, and R. H. Shumway, 1971, Applications of the joint epicenter determination method, SDL Report 275, Teledyne Geotech, AD 750769.
- Ben-Menahem, A., and D. Harkrider, 1964, Radiation patterns of seismic surface waves from buried dipolar point sources in a flat shatified earth, J. Geophys. Res., 69, 2605-2620.
- Blandford, R. R. and D. M. Clark, 1974, Detection of long-period S from earthquakes and explosions at LASA and LRSM stations with applications to positive and negative discrimination, SDAC-TR-75-15, Teledyne Geotech, Alexandria, Virginia.
- Chiburis, E. F., 1968a, LASA travel-time anomalies for 65 regions computed with the Herrin travel-time table, November 1966 version: Seismic Data Laboratory Report No. 204, Teledyne Geotech, Alexandria, Virginia. AD 825280.
- Chiburis, E. F., 1968b, Precision location of underground nuclear explosions using teleseismic networks and predetermined travel-time anomalies: Seismic Data Laboratory Report No. 214, Teledyne Geotech, Alexandria, Virginia. AD 832961.
- Chiburis, E. F. and R. O. Ahner, 1970, A seismic location study of station anomalies, network effects, and regional bias at the Nevada Test Site: Seismic Data Laboratory Report No. 253, Teledyne Geotech, Alexandria, Virginia. AD 876477.
- Chiburis, E. F., R. O. Ahner, and T. R. Potts, 1971, A location study of central Alaska earthquakes: Seismic Data Laboratory Report No. 274, Teledyne Geotech, Alexandria, Virginia. AD 886279.
- Der, Z. A., 1973, M<sub>s</sub>-m<sub>b</sub> characteristics of earthquakes in the Eastern Himalayan regions: Seismic Data Laboratory Report No. 290, Teledyne Geotech, Alexandria, Virginia. AD 759835.
- Douglas, A., 1967, Joint epicenter determination, Nature, 220, p. 469.
- Gupta, H. K. and H. Narain, 1967, Crustal structure in the Himalayan and Tibet plateau region from surface wave dispersion, Bull. Seism. Soc. Amer., v. 57, p. 235-248.

# REFERENCES (Continued)

- Harkrider, D., 1964, Surface waves in multilayered elastic media I.
  Rayleigh and Love waves from buried sources in a multilayered elastic halfspace, Bull. Seism. Soc. Amer., v. 54, p. 627-679.
- Herrin, E. and J. Taggert, 1968, Source bias in epicenter determinations, Bull. Seism. Soc. Amer., v. 58, p. 1791-1796.
- Isacks, B., J. Oliver, and L. R. Sykes, 1968, Seismology and new global tectonics, J. Geophys. Res., 73, p. 5855-5899.
- Lambert, D., 1974, Observed Rayleigh wave group velocities and spectral amplitudes for some Eurasian paths, Texas Instruments Technical Report No. 1, ALEX(01)-TR-74-01, Alexandria, Virginia.
- LePichon, X., 1968, Sea floor spreading and continental drift, J. Geophys. Res., 73, p. 3661-3697.
- Marshall, P. D. and P. W. Basham, 1972, Discrimination between earthquakes and underground explosions employing an improved M scale. geophys., J. R. Astr. Soc., 28, p. 431-458.
- McGarr, A., 1972, Propagation of Rayleigh waves across a continental margin, Bull. Seism. Soc. Amer., v. 59, p. 1281-1306.
- Veith, K. F. and G. E. Clawson, 1972, Magnitude from short period P-wave data, Bull. Seism. Soc. Amer., v. 62, p. 435-452.
- von Seggern, D., 1971, Effects of propagation paths on surface-wave magnitude estimates, Seismic Data Laboratory Report 279, Teledyne Geotech, Alexandria, Virginia.
- von Seggern, D. H., 1972, Seismic shear waves as a discriminant between earthquakes and underground nuclear explosions, Seismic Data Laboratory Report No. 295, Teledyne Geotech, Alexandria, Virginia. AD 747763.